Abstract
The subject originates in the 1950s with Abraham Robinson when he established the model completeness of the theory of algebraically closed valued fields. In the 1960s Ax & Kochen and, independently, Ershov, proved a remarkable theorem on henselian valued fields, with applications to p-adic number theory. These results and their refinements and extensions remain important in more recent developments like motivic integration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
One should of course regard \(\mathcal{L}_{\text{r}}\) and \(\mathcal{L}_{\text{v}}\) as disjoint.
References
S. Abhyankar, On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)
M. Artin, On the solutions of analytic equations. Invent. Math. 5, 277–291 (1968)
M. Artin, Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math. 36, 23–58 (1969)
J. Ax, S. Kochen, Diophantine problems over local fields. I. Am. J. Math. 87, 605–630 (1965)
J. Ax, S. Kochen, Diophantine problems over local fields. II. A complete set of axioms for p-adic number theory. Am. J. Math. 87, 631–648 (1965)
J. Ax, S. Kochen, Diophantine problems over local fields. III. Decidable fields. Ann. Math. 83, 437–456 (1966)
S. Azgin, L. van den Dries, Elementary theory of valued fields with a valuation-preserving automorphism. J. Inst. Math. Jussieu 10, 1–35 (2011)
L. Bélair, A. Macintyre, T. Scanlon, Model theory of the Frobenius on the Witt vectors. Am. J. Math. 129, 665–721 (2007)
N. Bourbaki, Elements of Mathematics. Commutative Algebra (Hermann, Paris, 1972). Translated from the French
G. Cherlin, Model Theoretic Algebra—Selected Topics. Lecture Notes in Mathematics, vol. 521 (Springer, Berlin, 1976)
R. Cluckers, J. Nicaise, J. Sebag (eds.) Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry, Volume I, vol. 383 of London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2011)
R. Cluckers, J. Nicaise, J. Sebag (eds.) Motivic integration and Its Interactions with Model Theory and Non-Archimedean Geometry. Volume II, vol. 384 of London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2011)
P.J. Cohen, Decision procedures for real and p-adic fields. Comm. Pure Appl. Math. 22, 131–151 (1969)
F. Delon, Quelques propriétés des corps valués en théorie des modeles. PhD thesis, Université Paris VII, 1982
J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety. Invent. Math. 77, 1–23 (1984)
J. Denef, F. Loeser, Motivic integration and the Grothendieck group of pseudo-finite fields. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 13–23 (Higher Ed. Press, Beijing, 2002)
J. Denef, L. van den Dries, p-adic and real subanalytic sets. Ann. Math. 128, 79–138 (1988)
J. Denef, p-adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369, 154–166 (1986)
A.J. Engler, A. Prestel, Valued Fields. Springer Monographs in Mathematics (Springer, Berlin, 2005)
Ju.L. Ershov, On elementary theories of local fields. Algebra i Logika Sem. 4, 5–30 (1965)
Ju.L. Ershov, On elementary theory of maximal normalized fields. Algebra i Logika Sem. 4, 31–70 (1965)
Ju.L. Ershov, On the elementary theory of maximal normed fields. II. Algebra i Logika Sem. 5, 5–40 (1966)
Ju.L. Ershov, On the elementary theory of maximal normed fields. III. Algebra i Logika Sem. 6, 31–38 (1967)
J. Fresnel, M. van der Put, Géométrie Analytique Rigide et Applications, vol. 18 of Progress in Mathematics (Birkhäuser Boston, Boston, 1981)
M.J. Greenberg, Lectures on Forms in Many Variables (W. A. Benjamin, New York-Amsterdam, 1969)
H. Hahn, Über die nichtarchimedischen Grössensysteme. S.-B. Akad. Wiss. Wien, Math.-naturw. Kl. Abt. IIa 116, 601–655 (1907)
D. Haskell, E. Hrushovski, D. Macpherson, Definable sets in algebraically closed valued fields: elimination of imaginaries. J. Reine Angew. Math. 597, 175–236 (2006)
D. Haskell, E. Hrushovski, D. Macpherson, Stable Domination and Independence in Algebraically Closed Valued Fields, vol. 30 of Lecture Notes in Logic (Association for Symbolic Logic, Chicago, 2008)
J. Holly, Definable equivalence relations and disc spaces of algebraically closed valued fields. PhD thesis, University of Illinois, 1992
E. Hrushovski, D. Kazhdan, Integration in valued fields. In Algebraic geometry and number theory, vol. 253 of Progr. Math., pp. 261–405 (Birkhäuser Boston, Boston, 2006)
I. Kaplansky, Maximal fields with valuations. Duke Math. J. 9, 303–321 (1942)
S. Kochen, The model theory of local fields. In 1xsy) ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), pp. 384–425. Lecture Notes in Math., vol. 499 (Springer, Berlin, 1975)
W. Krull, Allgemeine Bewertungstheorie. J. Reine Angew. Math. 167, 160–196 (1932)
S. Lang, Algebra, 2nd edn (Addison-Wesley Publishing Company Advanced Book Program, Reading, 1984)
L. Lipshitz, Z. Robinson, Rings of separated power series and quasi-affinoid geometry. Astérisque 264, vi+171 (2000)
A. Macintyre, On definable subsets of p-adic fields. J. Symbolic Logic 41, 605–610 (1976)
A. Macintyre, K. McKenna, L. van den Dries, Elimination of quantifiers in algebraic structures. Adv. Math. 47, 74–87 (1983)
M. Nagata, Local Rings. Interscience Tracts in Pure and Applied Mathematics, No. 13 (Interscience Publishers a division of Wiley, New York-London, 1962)
A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper. Math. Z. 39, 269–404 (1935)
J. Pas, Uniform p-adic cell decomposition and local zeta functions. J. Reine Angew. Math. 399, 137–172 (1989)
A. Prestel, P. Roquette, Formally p-adic Fields, vol. 1050 of Lecture Notes in Mathematics (Springer, Berlin, 1984)
P. Ribenboim, Théorie des Valuations, vol. 1964 of Séminaire de Mathématiques Supérieures, No. 9 (Été). Deuxième édition multigraphiée (Les Presses de l’Université de Montréal, Montreal, 1968)
A. Robinson, Complete Theories (North-Holland Publishing, Amsterdam, 1956)
P. Roquette, History of valuation theory. I. In Valuation Theory and Its Applications, Vol. I (Saskatoon, SK, 1999), vol. 32 of Fields Inst. Commun., pp. 291–355 (American Mathematical Society, Providence, 2002)
T. Scanlon, A model complete theory of valued D-fields. J. Symbolic Logic 65, 1758–1784 (2000)
T. Scanlon, Analytic difference rings. In International Congress of Mathematicians. Vol. II, pp. 71–92 (Eur. Math. Soc., Zürich, 2006)
O.F.G. Schilling, The Theory of Valuations. Mathematical Surveys, No. 4 (American Mathematical Society, New York, 1950)
J.-P. Serre, Corps Locaux. Publications de l’Institut de Mathématique de l’Université de Nancago, VIII. Actualités Sci. Indust., No. 1296 (Hermann, Paris, 1962)
J.-P. Serre, Cours d’arithmétique, vol. 2 of Collection SUP: “Le Mathématicien” (Presses Universitaires de France, Paris, 1970)
J.R. Shoenfield, Mathematical Logic (Addison-Wesley Publishing, Reading, London-Don Mills, Ont., 1967)
G. Terjanian, Un contre-exemple à une conjecture d’Artin. C. R. Acad. Sci. Paris Sér. A-B 262, A612 (1966)
J. van der Hoeven, Transseries and Real Differential Algebra, vol. 1888 of Lecture Notes in Mathematics (Springer, Berlin, 2006)
O. Zariski, P. Samuel, Commutative Algebra. Vol. II The University Series in Higher Mathematics (D. Van Nostrand, Princeton, Toronto-London-New York, 1960)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
van den Dries, L. (2014). Lectures on the Model Theory of Valued Fields. In: Model Theory in Algebra, Analysis and Arithmetic. Lecture Notes in Mathematics(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54936-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-54936-6_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54935-9
Online ISBN: 978-3-642-54936-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)