Skip to main content

Statistical Relational Learning to Recognise Textual Entailment

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8403))

Abstract

We propose a novel approach to recognise textual entailment (RTE) following a two-stage architecture – alignment and decision – where both stages are based on semantic representations. In the alignment stage the entailment candidate pairs are represented and aligned using predicate-argument structures. In the decision stage, a Markov Logic Network (MLN) is learnt using rich relational information from the alignment stage to predict an entailment decision. We evaluate this approach using the RTE Challenge datasets. It achieves the best results for the RTE-3 dataset and shows comparable performance against the state of the art approaches for other datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)

    MATH  Google Scholar 

  2. Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.: The second pascal recognising textual entailment challenge. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy (2006)

    Google Scholar 

  3. Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague meets markov: Deep semantics with probabilistic logical form. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, Atlanta, Georgia, USA, vol. 1, pp. 11–21 (June 2013)

    Google Scholar 

  4. Chambers, N., Cer, D., Grenager, T., Hall, D., Kiddon, C., MacCartney, B., de Marneffe, M.C., Ramage, D., Yeh, E., Manning, C.D.: Learning alignments and leveraging natural logic. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 165–170. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  5. Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations. In: Proceedings of EMNLP 2004, pp. 33–40 (2004)

    Google Scholar 

  6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537 (2011)

    MATH  Google Scholar 

  7. Dagan, I., Glickman, O., Magnini, B.: The pascal recognising textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Garrette, D., Erk, K., Mooney, R.: Integrating logical representations with probabilistic information using Markov logic. In: Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011), pp. 105–114 (2011)

    Google Scholar 

  9. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). The MIT Press (2007)

    Google Scholar 

  10. Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The third pascal recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, pp. 1–9 (2007)

    Google Scholar 

  11. Glickman, O., Dagan, I., Koppel, M.: A lexical alignment model for probabilistic textual entailment. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 287–298. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Harmeling, S.: An extensible probabilistic transformation-based approach to the third recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 137–142. Association for Computational Linguistics, Prague (2007)

    Chapter  Google Scholar 

  13. Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-geffet, M.: Directional distributional similarity for lexical inference. Nat. Lang. Eng. 16(4), 359–389 (2010)

    Article  Google Scholar 

  14. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Montréal, Canada, pp. 768–774 (1998)

    Google Scholar 

  15. MacCartney, B., Galley, M., Manning, C.D.: A phrase-based alignment model for natural language inference. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 802–811. Association for Computational Linguistics, Honolulu (2008)

    Google Scholar 

  16. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 193–200. Association for Computational Linguistics, Prague (2007)

    Chapter  Google Scholar 

  17. de Marneffe, M.C., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., Manning, C.D.: Learning to distinguish valid textual entailments. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy (2006)

    Google Scholar 

  18. Mehdad, Y., Magnini, B.: A word overlap baseline for the recognizing textual entailment task (2009), http://hlt.fbk.eu/sites/hlt.fbk.eu/files/baseline.pdf

  19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  20. Rios, M., Aziz, W., Specia, L.: TINE: A metric to assess MT adequacy. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, Scotland, pp. 116–122 (2011)

    Google Scholar 

  21. Rios, M., Aziz, W., Specia, L.: UOW: Semantically informed text similarity. In: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), Montréal, Canada, pp. 673–678 (2012)

    Google Scholar 

  22. Wang, M., Manning, C.D.: Probabilistic tree-edit models with structured latent variables for textual entailment and question answering. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING 2010, Stroudsburg, PA, USA, pp. 1164–1172 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rios, M., Specia, L., Gelbukh, A., Mitkov, R. (2014). Statistical Relational Learning to Recognise Textual Entailment. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54906-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54906-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54905-2

  • Online ISBN: 978-3-642-54906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics