A Machine Learning Approach to Pronominal Anaphora Resolution in Dialogue Based Intelligent Tutoring Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8403)


Anaphora resolution is a central topic in dialogue and discourse that deals with finding the referent of a pronoun. It plays a critical role in conversational Intelligent Tutoring Systems (ITSs) as it can increase the accuracy of assessing students’ knowledge level, i.e. mental model, based on their natural language inputs. Although anaphora resolution is one of the most studied problems in Natural Language Processing, there are very few studies that focus on anaphora resolution in dialogue based ITSs. To this end, we present Deep Anaphora Resolution Engine++ (DARE++) that adapts and extends existing machine learning solutions to resolve pronouns in ITS dialogues. Experiments showed that DARE++ achieves a F-measure of 88.93%, proving the potential of the proposed method for resolving pronouns in student-tutor dialogues.


Anaphora Resolution Tutoring System Machine Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arregi, O., Ceberio, K., Díaz de Illarraza, A., Goenaga, I., Sierra, B., Zelaia, A.: A first machine learning approach to pronominal anaphora resolution in basque. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 234–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ferguson, G., Allen, J., Galescu, L., Quinn, J., Swift, M.: Cardiac: An intelligent conversational assistant for chronic heart failure patient health monitoring. In: AAAI Fall Symposium Series: Virtual Health Care Interaction (VHI 2009), Arlington, VA (2009)Google Scholar
  3. 3.
    Gasperin, C., Briscoe, T.: Statistical anaphora resolution in biomedical texts. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 257–264. Association for Computational Linguistics (2008)Google Scholar
  4. 4.
    Mitkov, R.: Anaphora resolution: The state of the art. Tech. rep., University of Wolverhampton (1999)Google Scholar
  5. 5.
    Mitkov, R., Evans, R., Orăsan, C.: A new, fully automatic version of mitkov’s knowledge-poor pronoun resolution method. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 168–186. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Niraula, N.B., Rus, V., Banjade, R., Stefanescu, D., Baggett, W., Morgan, B.: The dare corpus: A resource for anaphora resolution in dialogue based intelligent tutoring systems. In: Proceedings of Language Resources and Evaluation, LREC (2014)Google Scholar
  7. 7.
    Niraula, N.B., Rus, V., Stefanescu, D.: Dare: Deep anaphora resolution in dialogue based intelligent tutoring systems. In: Proceedings of the 6th International Conference on Educational Data Mining (EDM 2013), pp. 266–267 (2013)Google Scholar
  8. 8.
    Poesio, M., Kabadjov, M.A.: A general-purpose, off-the-shelf anaphora resolution module: Implementation and preliminary evaluation. In: Proceedings of LREC (2004)Google Scholar
  9. 9.
    Poesio, M., Patel, A., Di Eugenio, B.: Discourse structure and anaphora in tutorial dialogues: An empirical analysis of two theories of the global focus. Research on Language and Computation 4(2-3), 229–257 (2006)CrossRefGoogle Scholar
  10. 10.
    Qiu, L., Kan, M.Y., Chua, T.S.: A public reference implementation of the rap anaphora resolution algorithm. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation (2004)Google Scholar
  11. 11.
    Rahman, A., Ng, V.: Supervised models for coreference resolution. In: Proceedings of EMNLP, pp. 968–977. ACL (2009)Google Scholar
  12. 12.
    Rus, V., D’Mello, S., Hu, X., Graesser, A.C.: Recent advances in conversational intelligent tutoring systems. AI Magazine 34(3) (2013)Google Scholar
  13. 13.
    Rus, V., Niraula, N., Lintean, M., Banjade, R., Stefanescu, D., Baggett, W.: Recommendations for the generalized intelligent framework for tutoring based on the development of the deeptutor tutoring service. In: AIED 2013 Workshops Proceedings, vol. 7, p. 116 (2013)Google Scholar
  14. 14.
    Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to coreference resolution of noun phrases. Computational Linguistics 27(4), 521–544 (2001)CrossRefGoogle Scholar
  15. 15.
    Stent, A.J., Bangalore, S.: Interaction between dialog structure and coreference resolution. In: 2010 IEEE Spoken Language Technology Workshop (SLT), pp. 342–347. IEEE (2010)Google Scholar
  16. 16.
    Strube, M., Müller, C.: A machine learning approach to pronoun resolution in spoken dialogue. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp. 168–175. Association for Computational Linguistics (2003)Google Scholar
  17. 17.
    Su, J., Yang, X., Hong, H., Tateisi, Y., Tsujii, J.: Coreference resolution in biomedical texts: a machine learning approach. Ontologies and Text Mining for Life Sciences 8 (2008)Google Scholar
  18. 18.
    Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti, A.: Bart: A modular toolkit for coreference resolution. In: Proceedings of ACL. pp. 9–12. ACL (2008)Google Scholar
  19. 19.
    Yang, X., Su, J., Tan, C.L.: Kernel-based pronoun resolution with structured syntactic knowledge. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 41–48. Association for Computational Linguistics (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of MemphisMemphisUSA

Personalised recommendations