Skip to main content

Methods and Algorithms for Unsupervised Learning of Morphology

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8403)

Abstract

This paper is a survey of methods and algorithms for unsupervised learning of morphology. We provide a description of the methods and algorithms used for morphological segmentation from a computational linguistics point of view. We survey morphological segmentation methods covering methods based on MDL (minimum description length), MLE (maximum likelihood estimation), MAP (maximum a posteriori), parametric and non-parametric Bayesian approaches. A review of the evaluation schemes for unsupervised morphological segmentation is also provided along with a summary of evaluation results on the Morpho Challenge evaluations.

Keywords

  • unsupervised learning
  • probabilistic models
  • morphological segmentation
  • machine learning of morphology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-54906-9_15
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-54906-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argamon, S., Akiva, N., Amir, A., Kapah, O.: Efficient unsupervised recursive word segmentation using minimum description length. In: Proceedings of the 20th International Conference on Computational Linguistics, COLING 2004, pp. 1058–1064. Association for Computational Linguistics, Stroudsburg (2004)

    Google Scholar 

  2. Arısoy, E., Dutaǧacı, H., Arslan, L.M.: A unified language model for large vocabulary continuous speech recognition of Turkish. Signal Process. 86, 2844–2862 (2006)

    CrossRef  MATH  Google Scholar 

  3. Aunimo, L., Heinonen, O., Kuuskoski, R., Makkonen, J., Petit, R., Virtanen, O.: Question answering system for incomplete and noisy data. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 193–206. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Baayen, R.: Word Frequency Distributions. Kluwer Academic Publishers (2001)

    Google Scholar 

  5. Bernhard, D.: Unsupervised morphological segmentation based on segment predictability and word segments alignment. In: PASCAL Challenge Workshop on Unsupervised Segmentation of Words into Morphemes (2006)

    Google Scholar 

  6. Berton, A., Fetter, P., Regel-Brietzmann, P.: Compound words in large-vocabulary German speech recognition systems. In: Proceedings of the Fourth International Conference on Spoken Language, ICSLP 1996, vol. 2, pp. 1165–1168 (October 1996)

    Google Scholar 

  7. Bilotti, M.W., Katz, B., Lin, J.: What works better for question answering: Stemming or morphological query expansion? In: Proceedings of the Information Retrieval for Question Answering (IR4QA) Workshop at SIGIR (2004)

    Google Scholar 

  8. Blackwell, D., MacQueen, J.B.: Ferguson distributions via polya urn schemes. The Annals of Statistics 1, 353–355 (1973)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Bordag, S.: Two-step approach to unsupervised morpheme segmentation. In: Proceedings of 2nd Pascal Challenges Workshop, pp. 25–29 (2006)

    Google Scholar 

  10. Bordag, S.: Unsupervised and Knowledge-Free Morpheme Segmentation and Analysis. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 881–891. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  11. Brent, M.R.: An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine Learning 34, 71–105 (1999)

    CrossRef  MATH  Google Scholar 

  12. Brent, M.R., Murthy, S.K., Lundberg, A.: Discovering morphemic suffixes a case study in mdl induction. In: Fifth International Workshop on AI and Statistics, Ft., pp. 264–271 (1995)

    Google Scholar 

  13. Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Comput. Linguist. 19(2), 263–311 (1993)

    Google Scholar 

  14. Can, B., Manandhar, S.: Clustering morphological paradigms using syntactic categories. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 641–648. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  15. Can, B., Manandhar, S.: Probabilistic hierarchical clustering of morphological paradigms. In: EACL, pp. 654–663 (2012)

    Google Scholar 

  16. Chan, E.: Structures and distributions in morphology learning. PhD thesis, University of Pennsylvania (2008)

    Google Scholar 

  17. Clark, A.S.: Inducing syntactic categories by context distribution clustering. In: Proceedings of CoNLL 2000 and LLL 2000, pp. 91–94 (2000)

    Google Scholar 

  18. Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  19. Creutz, M.: Unsupervised segmentation of words using prior distributions of morph length and frequency. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, ACL 2003, vol. 1, pp. 280–287. Association for Computational Linguistics, Stroudsburg (2003)

    Google Scholar 

  20. Creutz, M.: Induction of the Morphology of Natural Language: Unsupervised Morpheme Segmentation with Application to Automatic Speech Recognition. PhD thesis, Computer and Information Science, University of Technology, Espoo, Finland (2006)

    Google Scholar 

  21. Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Varjokallio, M., Arisoy, E., Saraçlar, M., Stolcke, A.: Morph-based speech recognition and modeling of out-of-vocabulary words across languages. ACM Trans. Speech Lang. Process. 5, 1–29 (2007)

    CrossRef  Google Scholar 

  22. Creutz, M., Lagus, K.: Unsupervised discovery of morphemes. In: Proceedings of the ACL 2002 Workshop on Morphological and Phonological Learning, MPL 2002, vol. 6, pp. 21–30. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  23. Creutz, M., Lagus, K.: Induction of a simple morphology for highly-inflecting languages. In: Proceedings of the 7th Meeting of the ACL Special Interest Group in Computational Phonology: Current Themes in Computational Phonology and Morphology, SIGMorPhon 2004, pp. 43–51. Association for Computational Linguistics, Stroudsburg (2004)

    Google Scholar 

  24. Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language from unannotated text. In: Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, pp. 106–113 (2005)

    Google Scholar 

  25. de Gispert, A., Mariño, J.: On the impact of morphology in English to Spanish statistical mt. Speech Communication 50, 1034–1046 (2008)

    CrossRef  Google Scholar 

  26. Déjean, H.: Morphemes as necessary concept for structures discovery from untagged corpora. In: Proceedings of the Joint Conferences on New Methods in Language Processing and Computational Natural Language Learning, NeMLaP3/CoNLL 1998, pp. 295–298. Association for Computational Linguistics, Stroudsburg (1998)

    Google Scholar 

  27. Demberg, V.: A language-independent unsupervised model for morphological segmentation. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 680–685 (2007)

    Google Scholar 

  28. Dreyer, M., Eisner, J.: Discovering morphological paradigms from plain text using a dirichlet process mixture model. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 616–627. Association for Computational Linguistics, Edinburgh (July 2011)

    Google Scholar 

  29. Ford, A., Singh, R., Martohardjono, G.: Pace Panini. Peter Lang (1967)

    Google Scholar 

  30. Gelbukh, A., Alexandrov, M., Han, S.-Y.: Detecting inflection patterns in natural language by minimization of morphological model. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 432–438. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  31. Goldsmith, J.: Unsupervised learning of the morphology of a natural language. Computational Linguistics 27(2), 153–198 (2001)

    CrossRef  MathSciNet  Google Scholar 

  32. Goldsmith, J.: An algorithm for the unsupervised learning of morphology. In: Natural Language Engineering, vol. 12, pp. 353–371 (2006)

    Google Scholar 

  33. Goldwater, S., Griffiths, T.L., Johnson, M.: Interpolating between types and tokens by estimating power-law generators. In: Advances in Neural Information Processing Systems, vol. 18. MIT Press, Cambridge (2006)

    Google Scholar 

  34. Goldwater, S., McClosky, D.: Improving statistical mt through morphological analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, pp. 676–683. Association for Computational Linguistics, Stroudsburg (2005)

    Google Scholar 

  35. Grünwald, P.: A tutorial introduction to the minimum description length principle. In: Advances in Minimum Description Length: Theory and Applications. MIT Press (2005)

    Google Scholar 

  36. Habash, N., Rambow, O.: Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 573–580. Association for Computational Linguistics, Stroudsburg (2005)

    Google Scholar 

  37. Hafer, M.A., Weiss, S.F.: Word segmentation by letter successor varieties. Information Storage and Retrieval 10(11-12), 371–385 (1974)

    CrossRef  Google Scholar 

  38. Hammarstrm, H.: A survey and classification of methods for (mostly) unsupervised learning of morphology. In: The 16th Nordic Conference of Computational Linguistics, NODALIDA 2007, Tartu, Estonia, May 25-26. NEALT (2007)

    Google Scholar 

  39. Harman, D.: How effective is suffixing. Journal of the American Society for Information Science 42(1), 7–15 (1991)

    CrossRef  Google Scholar 

  40. Harris, Z.S.: From phoneme to morpheme. Language 31(2), 190–222 (1955)

    CrossRef  Google Scholar 

  41. Ishwaran, H., James, L.F.: Generalized weighted chinese restaurant processes for species sampling mixture models. Statistica Sinica 13 (2003)

    MathSciNet  Google Scholar 

  42. Järvelin, K., Pirkola, A.: Morphological processing in mono- and cross-lingual information retrieval. In: Arppe, A., Carlson, L., Lindén, K., Piitulainen, J., Suominen, M., Vainio, M., Westerlund, H., Yli-Jyrä, A. (eds.) Inquiries into Words, Constraints and Contexts. Festschrift for Kimmo Koskenniemi on his 60th Birthday, pp. 214–226. CSLI Publications, Stanford (2005)

    Google Scholar 

  43. Kazakov, D.: Unsupervised learning of naive morphology with genetic algorithms. In: ECML/Mlnet Workshop on Empirical Learning of Natural Language Processing Tasks, Prague, pp. 105–112 (1997)

    Google Scholar 

  44. Kazakov, D., Manandhar, S.: Unsupervised learning of word segmentation rules with genetic algorithms and inductive logic programming. In: Machine Learning, pp. 43–121 (2001)

    Google Scholar 

  45. Keshava, S., Pitler, E.: A simpler, intuitive approach to morpheme induction. In: PASCAL Challenge Workshop on Unsupervised Segmentation of Words into Morphemes, pp. 31–35 (2006)

    Google Scholar 

  46. Kettunen, K., Kunttu, T., Järvelin, K.: To stem or lemmatize a highly inflectional language in a probabilistic ir environment? Journal of Documentation 61(4), 476–496 (2005)

    CrossRef  Google Scholar 

  47. Kirchhoff, K., Vergyri, D., Bilmes, J., Duh, K., Stolcke, A.: Morphology-based language modeling for conversational Arabic speech recognition. Computer Speech & Language 20(4), 589–608 (2006)

    CrossRef  Google Scholar 

  48. Toutanova, K., Suzuki, H., Ruopp, A.: Applying morphology generation models to machine translation. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 514–522. Association for Computational Linguistics, Columbus (2008)

    Google Scholar 

  49. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1993, pp. 191–202. ACM, New York (1993)

    CrossRef  Google Scholar 

  50. Kurimo, M., Lagus, K., Virpioja, S., Turunen, V.: Morpho challenge 2010 (June 2011), http://research.ics.tkk.fi/events/morphochallenge2010/

  51. Kurimo, M., Virpioja, S., Turunen, V.: Proceedings of the morpho challenge 2010 workshop. In: Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and Phonology, SIGMORPHON 2010, pp. 87–95. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  52. Larson, M., Willett, D., Khler, J., Rigoll, G.: Compound splitting and lexical unit recombination for improved performance of a speech recognition system for German parliamentary speeches. In: International Conference on Spoken Language Processing, pp. 945–948 (2000)

    Google Scholar 

  53. Lavallée, J.F., Langlais, P.: Morphological acquisition by formal analogy. In: Working Notes for the CLEF 2009 Workshop (September 2009)

    Google Scholar 

  54. Lignos, C.: Learning from unseen data. In: Kurimo, M., Virpioja, S., Turunen, V., Lagus, K. (eds.) Proceedings of the Morpho Challenge 2010 Workshop, Aalto University, Espoo, Finland, pp. 35–38 (2010)

    Google Scholar 

  55. Lignos, C., Chan, E., Marcus, M.P., Yang, C.: A rule-based unsupervised morphology learning framework. In: Working Notes for the CLEF 2009 Workshop (September 2009)

    Google Scholar 

  56. Manandhar, S., Deroski, S., Erjavec, T.: Learning multilingual morphology with clog. In: Page, D. (ed.) ILP 1998. LNCS, vol. 1446, pp. 135–144. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  57. Minkov, E., Toutanova, K., Suzuki, H.: Generating complex morphology for machine translation. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 128–135. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  58. Monson, C., Carbonell, J.G., Lavie, A., Levin, L.: Paramor: Finding paradigms across morphology. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 900–907. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  59. Monson, C., Hollingshead, K., Roark, B.: Probabilistic ParaMor. In: Proceedings of the 10th CLEF Conference on Multilingual Information Access Evaluation: Text Retrieval Experiments, CLEF 2009 (September 2009)

    Google Scholar 

  60. Morrison, D.R.: Patricia - practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM 15, 514–534 (1968)

    CrossRef  Google Scholar 

  61. Neuvel, S., Fulop, S.A.: Unsupervised learning of morphology without morphemes. In: Proceedings of the ACL 2002 Workshop on Morphological and Phonological Learning, MPL 2002, vol. 6, pp. 31–40. Association for Computational Linguistics, Stroudsburg (2002)

    CrossRef  Google Scholar 

  62. Orbanz, P., Teh, Y.W.: Bayesian nonparametric models. In: Encyclopedia of Machine Learning, pp. 81–89. Springer (2010)

    Google Scholar 

  63. Poon, H., Cherry, C., Toutanova, K.: Unsupervised morphological segmentation with log-linear models. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, NAACL 2009, pp. 209–217. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  64. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with Markov logic. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, pp. 650–659. Association for Computational Linguistics, Stroudsburg (2008)

    CrossRef  Google Scholar 

  65. Roeland Ordelman, A.V.H., Jong, F.D.: Compound decomposition in Dutch large vocabulary speech recognition. In: Proceedings of Eurospeech 2003, pp. 225–228 (2003)

    Google Scholar 

  66. Rosenfeld, R.: A whole sentence maximum entropy language model. In: Proceedings of the IEEE Workshop on Speech Recognition and Understanding (1997)

    Google Scholar 

  67. Schleicher, A.: Zur Morphologie der Spreche, St. Pétersburg. moires de l’Académie Impériale des Sciences de St. Pétersburg Series VII, vol. 1(7) (1859)

    Google Scholar 

  68. Sirts, K., Alumäe, T.: A hierarchical dirichlet process model for joint part-of-speech and morphology induction. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2012, pp. 407–416. Association for Computational Linguistics, Stroudsburg (2012)

    Google Scholar 

  69. Smith, N.A., Eisner, J.: Contrastive estimation: training log-linear models on unlabeled data. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 354–362. Association for Computational Linguistics, Stroudsburg (2005)

    CrossRef  Google Scholar 

  70. Snyder, B., Barzilay, R.: Unsupervised multilingual learning for morphological segmentation. In: Proceedings of ACL 2008: HLT, pp. 737–745. Association for Computational Linguistics, Columbus (June 2008)

    Google Scholar 

  71. Spiegler, S., Monson, C.: Emma: A novel evaluation metric for morphological analysis. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING (August 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Can, B., Manandhar, S. (2014). Methods and Algorithms for Unsupervised Learning of Morphology. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54906-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54906-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54905-2

  • Online ISBN: 978-3-642-54906-9

  • eBook Packages: Computer ScienceComputer Science (R0)