Advertisement

Artificial Intelligence for Knowledge Management with BPMN and Rules

  • Antoni Ligęza
  • Tomasz Potempa
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 422)

Abstract

This paper presents a framework combining BPMN and BR as a tool for Knowledge Management (KM). An attempt at providing a common model supported with Artificial Intelligence (AI) techniques and tools is put forward. Through an extended example it is shown how to combine BPMN and BR and how to pass to semantic level enabling building executable specifications and knowledge analysis. Some of the problems concerning these two approaches can be to certain degree overcome thanks to their complementary nature. We only deal with a restricted view of Knowledge Management, where knowledge can be modeled explicitly in a formal representation, and it does not take into account the hidden, personal knowledge.

Keywords

Business Process Knowledge Management Business Rule Object Management Group Outgoing Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical Report formal/2011-01-03, Object Management Group (2011)Google Scholar
  2. 2.
    Ambler, S.W.: Business Rules (2003), http://www.agilemodeling.com/artifacts/businessRule.htm
  3. 3.
    Giurca, A., Gašević, D., Taveter, K. (eds.): Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches. Information Science Reference, Hershey (2009)Google Scholar
  4. 4.
    OMG: Production Rule Representation RFP. Technical report, Object Management Group (2003)Google Scholar
  5. 5.
    OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Technical Report dtc/06-03-02, Object Management Group (2006)Google Scholar
  6. 6.
    Kluza, K., Nalepa, G.J., Łysik, Ł.: Visual inference specification methods for modularized rulebases. Overview and integration proposal. In: Nalepa, G.J., Baumeister, J. (eds.) Proceedings of the 6th Workshop on Knowledge Engineering and Software Engineering (KESE6) at the 33rd German Conference on Artificial Intelligence, Karlsruhe, Germany, September 21, pp. 6–17 (2010)Google Scholar
  7. 7.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis of BPMN process models. Preprint 7115. Technical report, Queensland University of Technology, Brisbane, Australia (2007)Google Scholar
  8. 8.
    Lam, V.S.W.: Formal analysis of BPMN models: a NuSMV-based approach. International Journal of Software Engineering and Knowledge Engineering 20, 987–1023 (2010)CrossRefGoogle Scholar
  9. 9.
    Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.: Translating BPMN to BPEL. Technical report, Faculty of Information Technology, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia Department of Technology Management, Eindhoven University of Technolog y, GPO Box 513, NL-5600 MB, The Netherlands (2006)Google Scholar
  10. 10.
    Wynn, M., Verbeek, H., van der Aalst, W.M.P., ter Hofstede, A.H., Edmond, D.: Business process verification – finally a reality! Business Process Management Journal 1, 74–92 (2009)CrossRefGoogle Scholar
  11. 11.
    Ligęza, A.: BPMN – a logical model and property analysis. Decision Making in Manufacturing and Services 5(1-2), 57–67 (2011)MATHMathSciNetGoogle Scholar
  12. 12.
    Ligęza, A., Nalepa, G.J.: Knowledge representation with granular attributive logic for XTT-based expert systems. In: Wilson, D.C., Sutcliffe, G.C.J., FLAIRS (eds.) FLAIRS-20: Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference: Key West, Florida, May 7-9, pp. 530–535. Florida Artificial Intelligence Research Society, AAAI Press, Menlo Park, California (2007)Google Scholar
  13. 13.
    Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1, 117–137 (2011)Google Scholar
  14. 14.
    Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)Google Scholar
  15. 15.
    Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems. International Journal of Applied Mathematics and Computer Science 20, 35–53 (2010)CrossRefGoogle Scholar
  16. 16.
    Szpyrka, M.: Design and analysis of rule-based systems with adder designer. In: Cotta, C., Reich, S., Schaefer, R., Ligęza, A. (eds.) Knowledge-Driven Computing: Knowledge Engineering and Intelligent Computations. SCI, vol. 102, pp. 255–271. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Szpyrka, M., Szmuc, T.: Design and verification of rule-based systems for Alvis models. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems. ISRL, vol. 43, pp. 539–558. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-based business rules. International Journal of Software Engineering and Knowledge Engineering (IJSEKE) 22, 485–524 (2012)CrossRefGoogle Scholar
  19. 19.
    Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Proposal of representing BPMN diagrams with XTT2-based business rules. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 243–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Bobek, S., Kaczor, K., Nalepa, G.J.: Overview of rule inference algorithms for structured rule bases. Gdansk University of Technology Faculty of ETI Annals 18, 57–62 (2010)Google Scholar
  21. 21.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Baki, B., Bouzid, M., Ligeza, A., Mouaddib, A.I.: A centralized planning technique with temporal constraints and uncertainty for multi-agent systems. J. Exp. Theor. Artif. Intell. 18, 331–364 (2006)CrossRefGoogle Scholar
  23. 23.
    Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg (2006)MATHGoogle Scholar
  24. 24.
    Szpyrka, M.: Exclusion rule-based systems – case study. In: International Multiconference on Computer Science and Information Technology, Wisla, Poland, vol. 3, pp. 237–242 (2008)Google Scholar
  25. 25.
    Ligęza, A., Szpyrka, M.: Reduction of tabular systems. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 903–908. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, Harlow (2002) ISBN 0-201-71159-1Google Scholar
  27. 27.
    Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelock in an interrupt-driven kernel. ACM Trans. Comput. Syst. 15, 217–252 (1997)CrossRefGoogle Scholar
  28. 28.
    Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 5–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx BPMN editor. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 573–581. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA - rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Kluza, K., Nalepa, G.J., Szpyrka, M., Ligęza, A.: Proposal of a hierarchical approach to formal verification of BPMN models using Alvis and XTT2 methods. In: Canadas, J., Nalepa, G.J., Baumeister, J. (eds.) 7th Workshop on Knowledge Engineering and Software Engineering (KESE 2011) at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011), La Laguna (Tenerife), Spain, November 10, pp. 15–23 (2011)Google Scholar
  32. 32.
    Szpyrka, M., Nalepa, G.J., Ligęza, A., Kluza, K.: Proposal of formal verification of selected BPMN models with Alvis modeling language. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 249–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Antoni Ligęza
    • 1
  • Tomasz Potempa
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Higher School of TarnówTarnowPoland

Personalised recommendations