Advertisement

Detecting Unrealizable Specifications of Distributed Systems

  • Bernd Finkbeiner
  • Leander Tentrup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8413)

Abstract

Writing formal specifications for distributed systems is difficult. Even simple consistency requirements often turn out to be unrealizable because of the complicated information flow in the distributed system: not every information is available in every component, and information transmitted from other components may arrive with a delay or not at all, especially in the presence of faults. The problem of checking the distributed realizability of a temporal specification is, in general, undecidable. Semi-algorithms for synthesis, such as bounded synthesis, are only useful in the positive case, where they construct an implementation for a realizable specification, but not in the negative case: if the specification is unrealizable, the search for the implementation never terminates. In this paper, we introduce counterexamples to distributed realizability and present a method for the detection of such counterexamples for specifications given in linear-time temporal logic (LTL). A counterexample consists of a set of paths, each representing a different sequence of inputs from the environment, such that, no matter how the components are implemented, the specification is violated on at least one of these paths. We present a method for finding such counterexamples both for the classic distributed realizability problem and for the distributed realizability problem with faulty nodes. Our method considers, incrementally, larger and larger sets of paths until a counterexample is found. While counterexamples for full LTL may consist of infinitely many paths, we give a semantic characterization such that the required number of paths can be bounded. For this fragment, we thus obtain a decision procedure. Experimental results, obtained with a QBF-based prototype implementation, show that our method finds simple errors very quickly, and even problems with high combinatorial complexity, like the Byzantine Generals’ Problem, are tractable.

References

  1. 1.
    Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. FOCS 1990, pp. 746–757 (1990)Google Scholar
  3. 3.
    Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: LICS, pp. 389–398. IEEE Computer Society (2001)Google Scholar
  4. 4.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, pp. 321–330. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for Technology Transfer 15(5-6), 519–539 (2013)CrossRefGoogle Scholar
  6. 6.
    Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7. ACM (2000)Google Scholar
  7. 7.
    Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math., Upsala, pp. 23–25 (1963)Google Scholar
  8. 8.
    Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  9. 9.
    Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Proc. of ICTL (1997)Google Scholar
  10. 10.
    Raman, V., Kress-Gazit, H.: Analyzing unsynthesizable specifications for high-level robot behavior using LTLMoP. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 663–668. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEMOCODE, pp. 43–50. IEEE (2011)Google Scholar
  12. 12.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for synthesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 147–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. In: PODC, pp. 50–61. ACM (1984)Google Scholar
  14. 14.
    Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3), 71–76 (2010)Google Scholar
  19. 19.
    Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bernd Finkbeiner
    • 1
  • Leander Tentrup
    • 1
  1. 1.Saarland UniversityGermany

Personalised recommendations