Advertisement

Formal Design of Fault Detection and Identification Components Using Temporal Epistemic Logic

  • Marco Bozzano
  • Alessandro Cimatti
  • Marco Gario
  • Stefano Tonetta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8413)

Abstract

Automated detection of faults and timely recovery are fundamental features for autonomous critical systems. Fault Detection and Identification (FDI) components are designed to detect faults on-board, by reading data from sensors and triggering predefined alarms.

The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques.

In this paper, we present the first formal framework for the design of FDI for discrete event systems. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical requirements, including novel aspects such as maximality and nondiagnosability. The language is equipped with a clear semantics based on temporal epistemic logic. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. Finally, we develop an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the framework on an industrial case-study coming from aerospace.

Keywords

Fault Detection European Space Agency Belief State Formal Design Critical Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    European Space Agency: ITT AO/1-6570/10/NL/LvH “Dependability Design Approach for Critical Flight Software”. Technical report (2010)Google Scholar
  2. 2.
    Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time. Lower bounds. Journal of Computer and System Sciences 38(1), 195–237 (1989)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Grastien, A., Anbulagan, A., Rintanen, J., Kelareva, E.: Diagnosis of discrete-event systems using satisfiability algorithms. In: AAAI, vol. 1, pp. 305–310 (2007)Google Scholar
  4. 4.
    Rintanen, J., Grastien, A.: Diagnosability testing with satisfiability algorithms. In: Veloso, M.M. (ed.) IJCAI, pp. 532–537 (2007)Google Scholar
  5. 5.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.C.: IEEE Transactions on Control Systems Technology 4, 105–124 (1996)Google Scholar
  6. 6.
    Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logics of Programs, vol. 193, pp. 196–218. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  7. 7.
    Bozzano, M., Cimatti, A., Gario, M., Tonetta, S.: Formal Specification and Synthesis of FDI through an Example. In: Workshop on Principles of Diagnosis, DX 2013 (2013), https://es.fbk.eu/people/gario/dx2013.pdf
  8. 8.
    Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of requirements for hybrid systems: A formal approach. ACM Transactions on Software Engineering and Methodology 21(4), 22 (2012)CrossRefGoogle Scholar
  9. 9.
    Cimatti, A., Pecheur, C., Cavada, R.: Formal Verification of Diagnosability via Symbolic Model Checking. In: IJCAI, pp. 363–369 (2003)Google Scholar
  10. 10.
    Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V., Roy, P.: Ticc: A Tool for Interface Compatibility and Composition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Schumann, A.: Diagnosis of discrete-event systems using binary decision diagrams. In: Workshop on Principles of Diagnosis (DX 2004), pp. 197–202 (2004)Google Scholar
  14. 14.
    Jiang, S., Kumar, R.: Failure diagnosis of discrete event systems with linear-time temporal logic fault specifications. IEEE Transactions on Automatic Control, pp. 128–133 (2001)Google Scholar
  15. 15.
    Ezekiel, J., Lomuscio, A., Molnar, L., Veres, S.: Verifying Fault Tolerance and Self-Diagnosability of an Autonomous Underwater Vehicle. In: IJCAI, pp. 1659–1664 (2011)Google Scholar
  16. 16.
    Huang, X.: Diagnosability in concurrent probabilistic systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Bozzano
    • 1
  • Alessandro Cimatti
    • 1
  • Marco Gario
    • 1
  • Stefano Tonetta
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations