Skip to main content

Normal Sleep

  • Chapter
  • First Online:
Sleep Disorders in Psychiatric Patients
  • 1008 Accesses

Abstract

The Oxford dictionary defines sleep as ‘a condition of body and mind which typically recurs for several hours every night, in which the nervous system is inactive, the eyes closed, the postural muscles relaxed, and consciousness practically suspended’. Sleep is episodic and, unlike unconsciousness, is promptly reversible. Sleep is a brain state, a physiological process and a behavioural process. The familiar behavioural characteristics of sleep include recumbence, quiescence and eye closure. While asleep, there is reduced awareness and reduced responsiveness to external stimuli. In addition to the diminution of sensory awareness, an active initiating mechanism of sleep is also believed to be at play. Sleep is also associated with relative motor inhibition. The external observable behaviour of an asleep individual suggests relative inactivity; this masks the intense neurological and physiological activity which goes on in sleep. Sleep is also tightly controlled by a complex neuronal circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Dijk DJ, Brunner DP, Borbely AA. A model of human sleep homeostasis based on EEG slow wave activity: quantitative comparison of data and simulations. Brain Res Bull. 1993;31(1–2):97–113.

    Article  CAS  PubMed  Google Scholar 

  • Anderson KN, Catt M, Collerton J, Davies K, von Zglinicki T, Kirkwood TB, et al. Assessment of sleep and circadian rhythm disorders in the very old: the Newcastle 85+ cohort study. Age Ageing. 2014;43(1):57–63. https://doi.org/10.1093/ageing/aft153.

    Article  PubMed  Google Scholar 

  • Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118:273–4.

    Article  CAS  PubMed  Google Scholar 

  • Banks S, Dinger DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519–28.

    PubMed  PubMed Central  Google Scholar 

  • Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.

    PubMed  CAS  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. 2012;92:1087–187.

    Article  CAS  PubMed  Google Scholar 

  • Carskadon MA, Dement WC. Effects of total sleep loss on sleep tendency. Percept Mot Skills. 1979;48:495–506.

    Article  CAS  PubMed  Google Scholar 

  • Carskadon MA, Dement WC. Sleepiness in the normal adolescent. In: Guilleminault C, editor. Sleep and its disorders in children. New York: Raven Press; 1987. p. 53–66.

    Google Scholar 

  • Carskadon MA, Dement WC. Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: W.B. Saunders Company; 1994. p. 16–25.

    Google Scholar 

  • Carskadon MA, Brown ED, Dement WC. Sleep fragmentation in the elderly: relationship to daytime sleep tendency. Neurobiol Aging. 1982;3:321–7.

    Article  CAS  PubMed  Google Scholar 

  • Carskadon MA, Wolfson AR, Acebo C, et al. Adolescent sleep patterns, circadian timing, and sleepiness at a transition to early school days. Sleep. 1998;21:871–81.

    Article  CAS  PubMed  Google Scholar 

  • Chokroverty S. Physiologic changes in sleep. In:Sleep disorders medicine. Boston: Butterworth-Heinemann; 1999. p. 95–126.

    Google Scholar 

  • Cirelli C, Tononi G. Is sleep essential? PLoS Biol. 2008;6(8):e216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F, Mitchison G. The function of dream sleep. Nature. 1983;304(5922):111–4.

    Article  CAS  PubMed  Google Scholar 

  • Davis H, Davis PA, Loomis AL, et al. Human brain potentials during the onset of sleep. J Neurophysiol. 1938;1:24–38.

    Article  Google Scholar 

  • Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol. 1957;9:673–90.

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15(5 Pt 1):3526–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drakatos P, Kosky CA, et al. First rapid eye movement sleep periods in sleep-stage sequencing of hypersomnias. Sleep Med. 2013;14(9):897–901.

    Article  PubMed  Google Scholar 

  • Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25:117–29.

    Article  PubMed  Google Scholar 

  • Espana RA, Scammell TE. Sleep neurobiology for the clinician. Sleep. 2004;27:811–20.

    PubMed  Google Scholar 

  • Fisher SP, Foster RG, Peirson SN. The circadian control of sleep. Handb Exp Pharmacol. 2013;217:157–83.

    Article  CAS  Google Scholar 

  • Floyd JA, Janisse JJ, Jenuwine ES, et al. Changes in REM-sleep percentage over the adult lifespan. Sleep. 2007;30:829–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley DJ, Monjan AA, Borwn SL, et al. Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep. 1995;18:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J Physiol. 2007;584:735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D. Short sleep duration as a risk factor for hypertension. Analyses of the first national health and nutrition examination survey. Hypertension. 2006;47:1–7.

    Article  CAS  Google Scholar 

  • Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 2014;37:10–9.

    Article  CAS  PubMed  Google Scholar 

  • Grace KP, Vanstone LE, Horner RL. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur. J Neurosci. 2014;34:14198–209. https://doi.org/10.1523/JNEUROSCI.0274-14.2014.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hobson JA. REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci. 2009;10(11):803–13.

    Article  CAS  PubMed  Google Scholar 

  • Horne JA. REM sleep—by default? Neurosci Biobehav Rev. 2000;24(8):777–97.

    Article  CAS  PubMed  Google Scholar 

  • Horne J. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biol Psychol. 2013;92(2):152–68.

    Article  PubMed  Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson AL, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine; 2007.

    Google Scholar 

  • Jouvet M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch Ital Biol. 1962;100:125–206.

    PubMed  CAS  Google Scholar 

  • Knutson KL, Spiegel K, Penev P, VanCauter E. The metabolic consequence of sleep deprivation. Sleep Med Rev. 2007;11(3):163–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Latta F, Leproult R, Tasali E, et al. Sex differences in delta and alpha EEG activities in healthy older adults. Sleep. 2005;28:1525–34.

    Article  PubMed  Google Scholar 

  • Loomis AL, Harvey EN, Hobart G. Distribution of disturbance-patterns in the human EEG with special reference to sleep. J Neurophysiol. 1938;1:413–30.

    Article  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441:589–94. https://doi.org/10.1038/nature04767.

    Article  PubMed  CAS  Google Scholar 

  • Luppi PH, Peyron C, Fort P. Role of MCH neurons in paradoxical (REM) sleep control. Sleep. 2013;36:1775–6. https://doi.org/10.5665/sleep.3192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maquet P. The role of sleep in learning and memory. Science. 2001;294:1048–52.

    Article  CAS  PubMed  Google Scholar 

  • McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007;8:302–30.

    Article  PubMed  Google Scholar 

  • Moruzzi G, Magoun H. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:445–73.

    Google Scholar 

  • Ohayon MM, Carskadon MA, Guilleminault C, et al. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27:1255–73.

    Article  PubMed  Google Scholar 

  • Oliver SJ, Costa RJ, Laing SJ, et al. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107:155–61.

    Article  PubMed  Google Scholar 

  • Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. In: Rechtschaffen A, Kales A, editors. Brain information service, brain research institute, University of California, los Angeles. California: University of California; 1968. p. 1–57.

    Google Scholar 

  • Redline S, Kirchner HL, Quan SF, et al. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med. 2004;164:406–18.

    Article  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE. The sleep switch:hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.

    Article  CAS  PubMed  Google Scholar 

  • Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One. 2009;4:e4272. https://doi.org/10.1371/journal.pone.0004272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol. 2008;86(3):264–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6:367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res. 2000;886(1–2):208–23.

    Article  CAS  PubMed  Google Scholar 

  • Siegal JM, Moore R, Thannickal T, et al. A brief history of hypocretin/orexin and narcolepsy. Neuropsychopharmacology. 2001;25:S14–20.

    Article  Google Scholar 

  • Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005;437(7063):1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JM. REM sleep: a biological and psychological paradox. Sleep Med Rev. 2011;15(3):139–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigel JM. The neurobiology of sleep. Semin Neurol. 2009;29:277–96.

    Article  Google Scholar 

  • Thomas M, Sing H, Belenky G. Neural basis of alertness and cognitive performance impairments during sleepiness. II. Effects of 48–72 hours of sleep deprivation on waking human regional brain activity. Thalamus Relat Syst. 2003;2:199–229.

    Article  Google Scholar 

  • Thorne D, Thomas M, Russo M, et al. Performance on a driving-simulator divided attention task during one week of restricted nightly sleep. Sleep. 1999;22(Suppl 1):301.

    Google Scholar 

  • Vetrivelan R, Fuller PM, Tong QA, Lu J. Medullary circuitry regulating rapid eye movement sleep and atonia. J Neurosci. 2009;29:9361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Economo CP. Sleep as a problem of localisation. J Nerv Ment Dis. 1930;71:249–59.

    Article  Google Scholar 

  • Welsh A, Thomas M, Thorne D, et al. Effect of 64 hours of sleep deprivation on accidents and sleep events during a driving simulator. Sleep. 1998;21(Suppl 3):234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rexford Muza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muza, R. (2018). Normal Sleep. In: Selsick, H. (eds) Sleep Disorders in Psychiatric Patients. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54836-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54836-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54835-2

  • Online ISBN: 978-3-642-54836-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics