Skip to main content

On Asymmetric Unification and the Combination Problem in Disjoint Theories

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8412)

Abstract

Asymmetric unification is a new paradigm for unification modulo theories that introduces irreducibility constraints on one side of a unification problem. It has important applications in symbolic cryptographic protocol analysis, for which it is often necessary to put irreducibility constraints on portions of a state. However many facets of asymmetric unification that are of particular interest, including its behavior under combinations of disjoint theories, remain poorly understood. In this paper we give a new formulation of the method for unification in the combination of disjoint equational theories developed by Baader and Schulz that both gives additional insights into the disjoint combination problem in general, and furthermore allows us to extend the method to asymmetric unification, giving the first unification method for asymmetric unification in the combination of disjoint theories.

Keywords

  • Normal Form
  • Combination Problem
  • Equational Theory
  • Theory Index
  • Free Abelian Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)

    Google Scholar 

  2. Baader, F., Schulz, K.U.: Unification in the Union of Disjoint Equational Theories: Combining Decision Procedures. Journal of Symbolic Computation 21(2), 211–243 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Baader, F., Snyder, W.: Unification Theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

    Google Scholar 

  4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations, CSFW 2001, pp. 82–96. IEEE Computer Society (2001)

    Google Scholar 

  5. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On Forward Closure and the Finite Variant Property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 327–342. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  6. Comon-Lundh, H., Delaune, S.: The Finite Variant Property: How to Get Rid of Some Algebraic Properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  7. Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C., Meadows, C., Meseguer, J., Narendran, P., Santiago, S., Sasse, R.: Effective Symbolic Protocol Analysis via Equational Irreducibility Conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C.A., Meadows, C., Meseguer, J., Narendran, P., Santiago, S., Sasse, R.: Asymmetric Unification: A New Unification Paradigm for Cryptographic Protocol Analysis. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 231–248. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  9. Erbatur, S., Kapur, D., Marshall, A.M., Meadows, C., Narendran, P., Ringeissen, C.: On Asymmetric Unification and the Combination Problem in Disjoint Theories. INRIA Research Report (2014), http://hal.inria.fr/

  10. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol Analysis Modulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  11. Escobar, S., Meseguer, J., Sasse, R.: Variant Narrowing and Equational Unification. Electronic Notes Theor. Comput. Science 238(3), 103–119 (2009)

    CrossRef  Google Scholar 

  12. Escobar, S., Sasse, R., Meseguer, J.: Folding Variant Narrowing and Optimal Variant Termination. J. Log. Algebr. Program. 81(7-8), 898–928 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Jouannaud, J.-P., Toyama, Y.: Modular Church-Rosser Modulo: The Complete Picture. Int. J. Software and Informatics 2(1), 61–75 (2008)

    Google Scholar 

  14. Liu, Z.: Dealing Efficiently with Exclusive OR, Abelian Groups and Homomorphism in Cryptographic Protocol Analysis. PhD thesis, Clarkson University (2012)

    Google Scholar 

  15. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the Symbolic Analysis of Security Protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  16. Mödersheim, S.: Models and methods for the automated analysis of security protocols. PhD thesis, ETH Zurich (2007)

    Google Scholar 

  17. Rusinowitch, M.: On Termination of the Direct sum of Term-Rewriting Systems. Information Processing Letters 26, 65–70 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erbatur, S., Kapur, D., Marshall, A.M., Meadows, C., Narendran, P., Ringeissen, C. (2014). On Asymmetric Unification and the Combination Problem in Disjoint Theories. In: Muscholl, A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2014. Lecture Notes in Computer Science, vol 8412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54830-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54830-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54829-1

  • Online ISBN: 978-3-642-54830-7

  • eBook Packages: Computer ScienceComputer Science (R0)