Advertisement

Abstract

We consider two-player reachability games with additional resource counters on arenas that are induced by the configuration graphs of pushdown systems. For a play, we define the resource cost to be the highest occurring counter value. In this way, we quantify resources and memory that player 0 needs to win. We introduce the bounded winning problem: Is there a uniform bound k such that player 0 can win the game from a set of initial configurations with this bound k? We provide an effective, saturation-based method to solve this problem for regular sets of initial and goal configurations.

Keywords

Resource Consumption Winning Strategy Counter Operation Game Graph Recursive Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Krcal, P., Yi, W.: R-automata. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 67–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis for consumption games with multiple resource types. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458, 49–60 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: CSL, pp. 181–196 (2013)Google Scholar
  8. 8.
    Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. Summaries of the Summer Institute of Symbolic Logic 1, 3–50 (1957)Google Scholar
  9. 9.
    Colcombet, T.: Regular cost functions over words (2009)Google Scholar
  10. 10.
    Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS, pp. 70–79 (2010)Google Scholar
  11. 11.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  12. 12.
    Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings London Mathematical Society s3-2(1), 326–336 (1952)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirsten, D.: Distance desert automata and the star height problem. RAIRO - Theoretical Informatics and Applications 39, 455–509 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A java bytecode checker based on moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 541–545. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2), 234–263 (2001)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Lang
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations