Advertisement

Interparticle Coupling-Enhanced Detection

  • Yi-Tao Long
  • Chao Jing
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

When the distances between two or more plasmonic nanoparticles are very small, the plasmon resonance scattering spectra are greatly enhanced and distinct colour changes occur due to the coupling of the particles. Similar to fluorescence resonance energy transfer, plasmonic coupling is also distance dependent. Thus, researchers have fabricated colorimetric sensors by modulating the distance between nanoparticles, which have been used in a wide variety of applications, including DNA hybridisation, heavy-metal-ion detection, and protein binding. In this chapter, we primarily focus on the coupling of single particles, which enables the single-molecule detection through enhanced sensitivity.

Keywords

Interparticle coupling Chains of metal nanoparticles Biosensors Biomolecular detection Cell imaging Plasmonic nanopores 

References

  1. 1.
    Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420–235432CrossRefGoogle Scholar
  2. 2.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  3. 3.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S et al (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087CrossRefGoogle Scholar
  4. 4.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20:13311–13319CrossRefGoogle Scholar
  5. 5.
    Frontiera RR, Gruenke NL, Van Duyne RP (2012) Fano-like resonances arising from long-lived molecule–plasmon interactions in colloidal nanoantennas. Nano Lett 12:5989–5994CrossRefGoogle Scholar
  6. 6.
    Wang J, Wang L, Liu X, Liang Z, Song S, Li W et al (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946CrossRefGoogle Scholar
  7. 7.
    Krpetić Z, Singh I, Su W, Guerrini L, Faulds K, Burley GA et al (2012) Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. J Am Chem Soc 134:8356–8359CrossRefGoogle Scholar
  8. 8.
    Liu ZD, Li YF, Ling J, Huang CZ (2009) A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles. Environ Sci Technol 43:5022–5027CrossRefGoogle Scholar
  9. 9.
    Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683CrossRefGoogle Scholar
  10. 10.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  11. 11.
    Song Y, Xu X, MacRenaris KW, Zhang XQ, Mirkin CA, Meade TJ (2009) Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed 48:9143–9147CrossRefGoogle Scholar
  12. 12.
    Chang W-S, Willingham BA, Slaughter LS, Khanal BP, Vigderman L, Zubarev ER et al (2011) Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proc Natl Acad Sci 108:19879–19884CrossRefGoogle Scholar
  13. 13.
    Zhang L, Chen H, Wang J, Li YF, Wang J, Sang Y et al (2010) Tetrakis (4-sulfonatophenyl) porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances. Small 6:2001–2009CrossRefGoogle Scholar
  14. 14.
    Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459CrossRefGoogle Scholar
  15. 15.
    Yang L, Wang H, Yan B, Reinhard BM (2010) Calibration of silver plasmon rulers in the 1–25 nm separation range: experimental indications of distinct plasmon coupling regimes. J Phys Chem C 114:4901–4908CrossRefGoogle Scholar
  16. 16.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903CrossRefGoogle Scholar
  17. 17.
    Woo KC, Shao L, Chen H, Liang Y, Wang J, Lin H-Q (2011) Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. ACS Nano 5:5976–5986CrossRefGoogle Scholar
  18. 18.
    Ross BM, Waldeisen JR, Wang T, Lee LP (2009) Strategies for nanoplasmonic core-satellite biomolecular sensors: theory-based design. Appl Phys Lett 95:193112–193114CrossRefGoogle Scholar
  19. 19.
    Atay T, Song J-H, Nurmikko AV (2004) Strongly interacting plasmon nanoparticle pairs: from dipole–dipole interaction to conductively coupled regime. Nano Lett 4:1627–1631CrossRefGoogle Scholar
  20. 20.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  21. 21.
    Shao L, Woo KC, Chen H, Jin Z, Wang J, Lin H-Q (2010) Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 4:3053–3062CrossRefGoogle Scholar
  22. 22.
    Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658CrossRefGoogle Scholar
  23. 23.
    Wang X, Gogol P, Cambril E, Palpant B (2012) Near-and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116:24741–24747CrossRefGoogle Scholar
  24. 24.
    Yang L, Yan B, Reinhard BM (2008) Correlated optical spectroscopy and transmission electron microscopy of individual hollow nanoparticles and their dimers. J Phys Chem C 112:15989–15996CrossRefGoogle Scholar
  25. 25.
    Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou P-Y, Chou J et al (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–89CrossRefGoogle Scholar
  26. 26.
    Tong L, Wei H, Zhang S, Li Z, Xu H (2013) Optical properties of single coupled plasmonic nanoparticles. Phys Chem Chem Phys 15:4100–4109CrossRefGoogle Scholar
  27. 27.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252CrossRefGoogle Scholar
  28. 28.
    Vernon KC, Funston AM, Novo C, Gómez DE, Mulvaney P, Davis TJ (2010) Influence of particle-substrate interaction on localized plasmon resonances. Nano Lett 10:2080–2086CrossRefGoogle Scholar
  29. 29.
    Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825CrossRefGoogle Scholar
  30. 30.
    Sheikholeslami S, Jun Y-W, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660CrossRefGoogle Scholar
  31. 31.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726CrossRefGoogle Scholar
  32. 32.
    Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356–R16359CrossRefGoogle Scholar
  33. 33.
    Solis DJ, Willingham B, Nauert SL, Slaughter LS, Olson J, Swanglap P et al (2012) Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12:1349–1353CrossRefGoogle Scholar
  34. 34.
    Grzelczak M, Mezzasalma SA, Ni W, Herasimenka Y, Feruglio L, Montini T et al (2012) Antibonding plasmon modes in colloidal gold nanorod clusters. Langmuir 28:8826–8833CrossRefGoogle Scholar
  35. 35.
    Février M, Gogol P, Aassime A, Mégy R, Delacour Cc, Chelnokov A et al (2012) Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett 12:1032–1037CrossRefGoogle Scholar
  36. 36.
    Wei Q-H, Su K-H, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4:1067–1071CrossRefGoogle Scholar
  37. 37.
    Kang Y, Erickson KJ, Taton TA (2005) Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J Am Chem Soc 127:13800–13801CrossRefGoogle Scholar
  38. 38.
    Wang H, Reinhard BM (2009) Monitoring simultaneous distance and orientation changes in discrete dimers of DNA linked gold nanoparticles. J Phys Chem C 113:11215–11222CrossRefGoogle Scholar
  39. 39.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  40. 40.
    Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J (2007) Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci 104:2667–2672CrossRefGoogle Scholar
  41. 41.
    Yuan Z, Cheng J, Cheng X, He Y, Yeung ES (2012) Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy. Analyst 137:2930–2932CrossRefGoogle Scholar
  42. 42.
    Xiao L, Wei L, He Y, Yeung ES (2010) Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem 82:6308–6314CrossRefGoogle Scholar
  43. 43.
    Sebba DS, Mock JJ, Smith DR, Labean TH, Lazarides AA (2008) Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett 8:1803–1808CrossRefGoogle Scholar
  44. 44.
    Verdoold R, Gill R, Ungureanu F, Molenaar R, Kooyman RP (2011) Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Biosens Bioelectron 27:77–81CrossRefGoogle Scholar
  45. 45.
    Rong G, Wang H, Skewis LR, Reinhard BM (2008) Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett 8:3386–3393CrossRefGoogle Scholar
  46. 46.
    Shi L, Jing C, Ma W, Li DW, Halls JE, Marken F, Long YT (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014 CrossRefGoogle Scholar
  47. 47.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153 Google Scholar
  48. 48.
    Ying YL, Li DW, Li Y, Lee JS, Long YT (2011) Enhanced translocation of poly(dt)45 through an α-hemolysin nanopore by binding with antibody. Chem Commun 47:5690–5692 Google Scholar
  49. 49.
    Ying YL, Wang HY, Sutherland TC, Long YT (2011) Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore Google Scholar
  50. 50.
    Pang Y, Gordon R (2011) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11:3763–3767Google Scholar
  51. 51.
    Im H, Wittenberg NJ, Lesuffleur A, Lindquist NC, Oh S-H (2010) Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem Sci 1:688–696CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials and Department of ChemistryEast China University of Science and TechnologyShanghaiChina

Personalised recommendations