Comparison of Hand Feature Points Detection Methods

  • Tomasz Grzejszczak
  • Adam Gałuszka
  • Michał Niezabitowski
  • Krystian Radlak
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)


This paper presents the research and comparison of four methods of hand characteristic points detection. Each method was implemented and modified in order to test their capabilities on database for hand gesture recognition. All methods are explained, tested and compared to others with other leading to final remarks. The main purpose of the research is to choose the best algorithm giving the most information about human hand that would lead to create a human – computer interaction program.


Hand gestures HCI Characteristic points detection Sign language 


  1. 1.
    Grzejszczak, T., Nalepa, J., Kawulok, M.: Real-time wrist localization inhand silhouettes. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, pp. 439–449. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Czupryna, M., Kawulok, M.: Real-time vision pointer interface. In: Proceedings of International Symposium ELMAR 2012, pp. 49–52 (2012)Google Scholar
  3. 3.
    Tanibata, N., Shimada, N., Shirai, Y.: Extraction of hand features for recognition of sign language words. In: Proceedings of the International Conference on Vision Interface, pp. 391–398 (2002)Google Scholar
  4. 4.
    Stergiopoulou, E., Papamarkos, N.: Hand gesture recognition using a neural network shape fitting technique. Engineering Applications of Artificial Intelligence 22, 1141–1158 (2009)CrossRefGoogle Scholar
  5. 5.
    Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recognition Letters (2013) (article in press)Google Scholar
  6. 6.
    Kawulok, M.: Fast propagation-based skin regions segmentation in color images. In: Proceedings of 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–7 (2013)Google Scholar
  7. 7.
    Kawulok, M., Grzejszczak, T., Nalepa, J., Knyc, M.: Database for hand gesture recognition (2012),
  8. 8.
    Kawulok, M., Kawulok, J., Nalepa, J., Papiez, M.: Skin detection using spatial analysis with adaptive seed. In: Proceedings ofIEEE International Conference on Image Processing (ICIP 2013), pp. 3720–3724 (2013)Google Scholar
  9. 9.
    Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. IEEE REGION 8 EUROCON 2003, Computer as a Tool 2, 144–148 (2003)CrossRefGoogle Scholar
  10. 10.
    Jones, M., Rehg, J.: Statistical color models with application to skin detection. International Journal of Computer Vision 46, 81–96 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.G.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40, 1106–1122 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Phung, S.L., Chai, D., Bouzerdoum, A.: Adaptive skin segmentation in color images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 353–356 (2003)Google Scholar
  13. 13.
    Soriano, M., Martinkauppi, B., Huovinen, S., Laaksonen, M.: Skin detection in video under changing illumination conditions. In: 15th International Conference on Pattern Recognition (ICPR 2000), vol. 1, pp. 839–842 (2000)Google Scholar
  14. 14.
    Solar, J.R., Verschae, R.: Skin detection using neighborhood information. In: 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 463–468 (2004)Google Scholar
  15. 15.
    Sato, Y., Kabayashi, Y., Koike, H.: Fast Tracking of Hands and Fingertips in Infrared Images for Augmented Desk Interface. In: Proceedings of 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 462–467 (2000)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Tomasz Grzejszczak
    • 1
  • Adam Gałuszka
    • 1
  • Michał Niezabitowski
    • 1
  • Krystian Radlak
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations