Advertisement

Human Polarization Sensitivity

  • Juliette McGregorEmail author
  • Shelby Temple
  • Gábor Horváth
Chapter
Part of the Springer Series in Vision Research book series (SSVR, volume 2)

Abstract

Humans can detect the E-vector of incident polarized light using a subtle, transient visual phenomenon known as Haidinger’s brush. The effect is a result of the human macula having the properties of a radial analyser with peak absorption at 460 nm. A number of mechanisms, each capable of generating radial diattenuation, have been proposed: (1) oblique light incident on cone outer segments, (2) form dichroism in the Henle fibre layer (the photoreceptor axons) and (3) a perpendicular arrangement of dichroic carotenoid pigments with respect to the radially oriented Henle fibres. A close correlation between the dichroic ratio of the macula and the optical density spectrum of liposome-bound lutein and zeaxanthin provides strong evidence that macular pigment plays a key role. Corneal birefringence can affect the contrast and perceived angle of the brush, together with the appearance of the phenomenon in circularly polarized light. When the retina is photographed between crossed polarizers, a brush-like pattern is observed; this is a result of the birefringence of the Henle fibre layer and cornea and is distinct from the radial diattenuation that generates Haidinger’s brush. A secondary entoptic phenomenon that allows humans to detect the orientation of polarized light was described by Gundo von Boehm. Boehm’s brush is only visible when a polarized light source rotates in the peripheral visual field against a dark background and results from light scattering off axis into the photoreceptors. Both phenomena allow for the detection of polarized light by the unaided human eye; however, there is no evidence to suggest that such capabilities are adaptive.

Keywords

Retinal Nerve Fibre Layer Polarization Sensitivity Macular Pigment Peripheral Visual Field Dichroic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS (2004) Identification and characterization of a pi isoform of Glutathione S-Transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279:49447–49454PubMedCrossRefGoogle Scholar
  2. Bone RA (1980) The role of the macular pigment in the detection of polarized light. Vis Res 20:213–220PubMedCrossRefGoogle Scholar
  3. Bone RA, Landrum JT (1983) Dichroism of lutein: a possible basis for Haidinger’s brushes. Appl Opt 22:775–776PubMedCrossRefGoogle Scholar
  4. Bone RA, Landrum JT (1984) Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes. Vis Res 24:103–108PubMedCrossRefGoogle Scholar
  5. Bone RA, Landrum JT, Tarsis SL (1985) Preliminary identification of the human macular pigment. Vis Res 25:1531–1535PubMedCrossRefGoogle Scholar
  6. Bone RA, Landrum JT, Cains A (1992) Optical density spectra of the macular pigment in vivo and in vitro. Vis Res 32:105–110PubMedCrossRefGoogle Scholar
  7. Bone RA, Landrum JT, Hime GW, Cains A, Zamor J (1993) Stereochemistry of the human macular carotenoids. Investig Ophthalmol Vis Sci 34:2033–2040Google Scholar
  8. Brink HB, van Blokland GJ (1988) Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J Opt Soc Am A 5:49–57PubMedCrossRefGoogle Scholar
  9. De Vries HL, Spoor A, Jielof R (1953) Properties of the eye with respect to polarized light. Physica 19:419–432CrossRefGoogle Scholar
  10. Delori FC, Webb RH, Parker JS (1979) Macular birefringence. Invest Ophthalmol Vis Sci (Suppl, ARVO Abstr) 19:53Google Scholar
  11. Denton EJ (1959) The contributions of the oriented photosensitive and other molecules to the absorption of the whole retina. Proc R Soc Lond B 150:78–94PubMedCrossRefGoogle Scholar
  12. Dodt E, Kuba M (1990) Visually evoked potentials in response to rotating plane-polarized blue light. Ophthalmic Res 22:391–394PubMedCrossRefGoogle Scholar
  13. Elsner AE, Weber A, Cheney MC, VanNasdale DA (2008) Spatial distribution of macular birefringence associated with the Henle fibers. Vis Res 48(26):2578–2585PubMedCrossRefPubMedCentralGoogle Scholar
  14. Fairbairn MB (2001) Physical models of Haidinger’s brush. J R Astron Soc Can 95:248–251Google Scholar
  15. Forster HWJ (1954) The clinical use of the Haidinger’s brushes phenomenon. Am J Ophthalmol 38:661–665PubMedCrossRefGoogle Scholar
  16. Fuld K, Wooten BR, Katz L (1979) The Stiles-Crawford hue shift following photopigment depletion. Nature 279:152–154PubMedCrossRefGoogle Scholar
  17. Goldschmidt M (1950) A new test for function of the macula lutea. Arch Ophthalmol 44:129–135CrossRefGoogle Scholar
  18. Gribakin FG, Govardovskii VI (1975) The role of the photoreceptor membrane in photoreceptor optics. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Heidelberg, pp 215–236CrossRefGoogle Scholar
  19. Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115PubMedCrossRefGoogle Scholar
  20. Hemenger RP (1982) Dichroism of the macular pigment and Haidinger’s brushes. J Opt Soc Am A 72:734–737CrossRefGoogle Scholar
  21. Hochheimer BF (1978) Polarized light retinal photography of a monkey eye. Vis Res 18:19–23PubMedCrossRefGoogle Scholar
  22. Hochheimer BF, Kues HA (1982) Retinal polarization effects. Appl Opt 21:3811–3818PubMedCrossRefGoogle Scholar
  23. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, HeidelbergCrossRefGoogle Scholar
  24. Knighton RW, Huang XR (2002) Linear birefringence of the central human cornea. Investig Ophthalmol Vis Sci 43:82–86Google Scholar
  25. Knighton RW, Huang XR, Cavuoto LA (2008) Corneal birefringence mapped by scanning laser polarimetry. Opt Express 16:13738–13751PubMedCrossRefGoogle Scholar
  26. Laties AM, Liebman PA, Campbell CE (1968) Photoreceptor orientation in the primate eye. Nature 218:172–173PubMedCrossRefGoogle Scholar
  27. Le Floch A, Ropars G, Enoch J, Lakshminarayanan V (2010) The polarization sense in human vision. Vis Res 50:2048–2054PubMedCrossRefGoogle Scholar
  28. Lester G (1970) Haidinger’s brushes and the perception of polarization: the history to the present of an on-going problem. Acta Psychol 34:106–114CrossRefGoogle Scholar
  29. Li B, Vachali P, Frederick JM, Bernstein PS (2011) Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry 50:2541–2549PubMedCrossRefPubMedCentralGoogle Scholar
  30. Liebman PA, Jagger WS, Kaplan MW, Bargoot FG (1974) Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251:31–37PubMedCrossRefGoogle Scholar
  31. Maxwell JC (1850) Manuscript on experiments on the cause of Haidinger’s brushes. The scientific letters and papers of James Clerk Maxwell. Taylor and Francis, London, pp 199–204Google Scholar
  32. Misson GP (2003) A Mueller matrix model of Haidinger’s brushes. Ophthalmic Physiol Opt 23:441–447PubMedCrossRefGoogle Scholar
  33. Naylor EJ, Stanworth A (1954) Retinal pigment and the Haidinger effect. J Physiol Lond 124:543–552PubMedPubMedCentralGoogle Scholar
  34. Naylor EJ, Stanworth A (1955) The measurement and clinical significance of the Haidinger effect. Trans Opthalmol Soc UK 75:67–79Google Scholar
  35. Ovcharenko AP, Yegorenkov VD (2002) Teaching students to observe Haidinger brushes. Eur J Phys 23:123–125CrossRefGoogle Scholar
  36. Ropars G, Le Floch A, Enoch J, Lakshminarayanan V (2012a) Direct naked-eye detection of chiral and Faraday effects in white light. Europhys Lett 97:64002–64006CrossRefGoogle Scholar
  37. Ropars G, Gorre G, Le Floch A, Enoch J, Lakshminarayanan V (2012b) A depolarizer as a possible precise sunstone for Viking navigation by polarized skylight. Proc R Soc A 468:671–684CrossRefGoogle Scholar
  38. Rothmayer M, Dultz W, Frins E, Zhan Q, Tierney D, Schmitzer H (2007) Nonlinearity in the rotational dynamics of Haidinger’s brushes. Appl Opt 46:7244–7251PubMedCrossRefGoogle Scholar
  39. Schalch W, Landrum JT, Bone RA (2009) The Eye. In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids. Basel, Birkhäuser, pp 301–334CrossRefGoogle Scholar
  40. Schmidt WJ (1938) Polarisationsoptische Analyse eines Eiweiss-Lipoid-Systems, erlautert am Aussenglied der Sehzellen. Kolloid-Zeitschrift 85:137–148CrossRefGoogle Scholar
  41. Sekatski P, Brunner N, Branciard C, Gisin N, Simon C (2009) Towards quantum experiments with human eyes as detectors based on cloning via stimulated emission. Phys Rev Lett 103:113601–113604PubMedCrossRefGoogle Scholar
  42. Shurcliff WA (1955) Haidinger’s brushes and circularly polarized light. J Opt Soc Am 45:399CrossRefGoogle Scholar
  43. Sloan LL, Naquin HA (1955) A quantitative test for determining the visibility of the Haidinger brushes: clinical applications. Am J Ophthalmol 40:393–406PubMedCrossRefGoogle Scholar
  44. Snodderly DM, Auran JD, Delori FC (1984) The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25:674–685PubMedGoogle Scholar
  45. Stiles WS, Crawford BH (1933) The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond B 112:428–450CrossRefGoogle Scholar
  46. Stokes GG (1850) On Haidinger’s brushes. British Association Reports, EdinburghGoogle Scholar
  47. Summers DM, Friedmann GB, Clements RM (1970) Physical model for Haidinger’s brush. J Opt Soc Am 60:271–272PubMedCrossRefGoogle Scholar
  48. Van Nasdale DA, Elsner AE, Weber A, Miura M, Haggerty BP (2009) Determination of foveal location using scanning laser polarimetry. J Vis 9:1–17Google Scholar
  49. von Boehm G (1940a) Über maculare (Haidinger’sche) Polarisationsbüschel und über einen polarisationsoptischen Fehler des Auges. Acta Ophthalmol (Copenhagen) 18:109–142CrossRefGoogle Scholar
  50. von Boehm G (1940b) Über ein neues entoptisches Phänomen im polarisierten Licht: “periphere” Polarisationsbüschel. Acta Ophthalmol (Copenhagen) 18:143–169CrossRefGoogle Scholar
  51. von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148PubMedCrossRefGoogle Scholar
  52. von Helmholtz H (1924) Treatise on physiological optics. In: Southall JPC (ed) Optical society of America., pp 301–308Google Scholar
  53. Vos JJ, Bouman MA (1964) Contribution of the retina to entoptic scatter. J Opt Soc Am 54:95–100PubMedCrossRefGoogle Scholar
  54. Weale RA (1976) On the spectral sensitivity of the human retina to light which it has scattered. Vis Res 16:1395–1399PubMedCrossRefGoogle Scholar
  55. Zhevandrov ND (1995) Polarisation physiological optics. Physics-Uspekhi 38:1147–1166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juliette McGregor
    • 1
    • 2
    Email author
  • Shelby Temple
    • 1
  • Gábor Horváth
    • 3
  1. 1.School of Biological SciencesUniversity of BristolBristolUK
  2. 2.Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and PsychologyUniversity of LeicesterLeicesterUK
  3. 3.Environmental Optics Laboratory, Department of Biological Physics, Physical InstituteEötvös UniversityBudapestHungary

Personalised recommendations