Skip to main content

Die Auswirkungen des Klimawandels auf die Biodiversität

  • 15k Accesses

Zusammenfassung

Der Klimawandel (Kw) ist eine inzwischen nicht mehr zu leugnende Realität. Kapitel 12 stellt einige Klimasignale (Abschn. 12.1), bereits auf der Ebene von Arten erkennbare (12.2) und auf ökosystemarer Ebene zu erwartende Auswirkungen (12.3 - 12.5) sowie einige Gewinner und Verlierer des Kw vor (12.6). Abschließend wird ein Resümee gezogen (12.7). Bereits gut dokumentiert sind Arealerweiterungen und Verhaltensänderungen (z.B. früheres Brüten, späterer Herbstzug) von Tierarten bzw. ebenfalls Arealerweiterungen und phänologische Änderungen (u.a. früherer Blühtermin) bei Pflanzen. Ob eine Art den Kw unbeschadet, unter genetischen Verlusten oder gar nicht überlebt, hängt von ihrer Klimasensibilität, genetischen Diversität und Mobilität sowie von Ausbreitungshindernissen und den Konkurrenzverhältnissen am klimatisch geeigneten Ausweichstandort ab. Exemplarisch behandelt werden die Auswirkungen des Kw auf Reptilien und Amphibien, Grundwasser und Binnengewässer, Feuchtstandorte, marine Ökosysteme und den alpinen bzw. montanen Bereich. Außerdem werden einige allgemeine biozönotische und ökosystemare Effekte vorgestellt: Entkopplung von Bestäuber-, Futter- und Räuber-Beute-Beziehungen sowie Veränderung von Nahrungsnetzen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Adamik P, Kral M (2008) Climate– and resource–driven long–therme changes in dormice populations negatively affect hole–nesting songbirds. J Zool 275: 209–215

    Google Scholar 

  • Alford RA, Bradfield KS, Richards SJ (2007) Global warming and amphibian losses. Nature 447:E3–E4

    CAS  PubMed  Google Scholar 

  • Allison I, Bindoff NL, Bindschadler RA, Cox PM, de Noblet N, England MH, Francis JE, Gruber N, Haywood AM, Karoly DJ, Kaser G, Le Quéré C, Lenton TM, Mann ME, MacNeil BI, Pitman AJ, Rahmstorf S, Rignot E, Schellnhuber HJ, Schneider SH, Sherwood SC, Sommerville RCJ, Steffen K, Steig EJ, Visbeck M, Weaver AJ (2009) The Copenhagen Diagnosis. Updating the world on the latest climate science. University of New South Wales Climate Change Center, Sydney

    Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin

    Google Scholar 

  • Bach M, Huber A, Frede H-G, Mohaupt V, Zullei-Seibert N (2000) Schätzung der Einträge von Pflanzenschutzmitteln aus der Landwirtschaft in die Oberflächengewässer Deutschlands. Berichte Umweltbundesamt Forschungsbericht, Bd. 29524034. Erich–Schmidt–Verlag, Berlin

    Google Scholar 

  • Bach W (1985) Der anthropogen gestörte Kohlenstoffkreislauf: Methoden zur Abschätzung der CO2–Entwicklung in der Vergangenheit und in der Zukunft. Düsseldorfer Gebot Kolloq 2:3–23

    Google Scholar 

  • Bach W, Greuer G (1980) Wie dringend ist das CO2–Problem. Umschau 80:520–525

    CAS  Google Scholar 

  • Bairlein F, Exo K-M (2007) Climate change and migratory birds in the Wadden Sea. Wadden Sea Ecosystem 23:43–52

    Google Scholar 

  • Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Climate change will lead to massive loss of cryptic biodiversity. Nature. Climate Change 1:313–318

    Google Scholar 

  • Battisti A, Stastny M, Buffo E, Larsson S (2006) A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climate anomaly. Global Change Biol 12:662–671

    Google Scholar 

  • Beaugrand G, Reid PC (2003) Long–term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biol 9:801–817

    Google Scholar 

  • Becker P, Jakob D, Deutschländer T, Imbery F, Müller-Westermeier G, Roos M (2012) Klimawandel in Deutschland. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 23–37

    Google Scholar 

  • Beebee TJC (1995) Amphibian breeding and climate. Nature 374:219–220

    CAS  Google Scholar 

  • Berger S, Walther G-R (2007) Immergrüne Laubgehölze – Indikatoren des Klimawandels? Berichte Reinhold–Tüxen–Ges 19:44–59

    Google Scholar 

  • Biggs R, Simons H, Bakkenes M, Scholes RJ, Eickhout B, van Vuuren D, Alkemade R (2008) Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environmental Change 18:296–309

    Google Scholar 

  • Bijoor NS, Czimczik CI, Pataki DE, Billings SA (2008) Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Global Change Biol 14:2119–2131

    Google Scholar 

  • Böhme W, Rödder D (2008) Amphibien und Reptilien: Verbreitungs– und Verhaltensänderungen aufgrund der Erderwärmung. In: Lozán JL, Graß G, Jendritzky G, Karbe L, Reise K (Hrsg): Warnsignal Klima: Erderwärmung: 77–81. Hamburg Bonn S, Poschlod P ( 1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin PA, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large–scale geographical variation confirms that climate change causes birds to lay earlier. Proc Royal Soc London B 271:1657–1662

    Google Scholar 

  • Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations ? J Animal Ecol 78:73–83

    Google Scholar 

  • Brandt G, Wehrmann A, Wirtz KG (2008) Rapid invasion of Crassostrea gigas into th German Wadden Sea dominated by larval supply. Sea Research 59:279–296

    Google Scholar 

  • Brasseur G, Mosbrugger V, Schaller M, Stribrny B (2012) Einführung. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 12–22

    Google Scholar 

  • Brewer PG (1978) Direct observations of the oceanic CO2–increase. Geophys Res Letters 5:997–1000

    CAS  Google Scholar 

  • Brouyère S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer. Geer basin, Belgium. Hydrogeol J 12:123–134

    Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios. C2SM, MeteoSwiss, ETH, NCCR Climate & OcCC, Zürich. http//www.ch2011.ch/pdf/CH2011reportLOW.pdf. Zugegriffen: 10.12.2012

    Google Scholar 

  • Chamaille–Jammes S, Massot M, Aragón P, Colbert J (2006) Global warming and positive fitness reponse in mountain populations of common lizards (Lacerta vivipara). Global Change Biol 12: 392–402 Crick HQ, Dudley C, Glue DE (1997) UK birds are laying eggs earlier. Nature 388: 526

    Google Scholar 

  • Croci-Maspoli M, Essl F (2013) Klimatologische Grundlagen. In: Essl F, Rabitsch W (Hrsg) Biodiversität und Klimawandel. Springer, Berlin, S 4–29

    Google Scholar 

  • D’Amen M, Bombi P (2009) Global warming and biodiversity: Evidence of climate–linked amphibian declines in Italy. Biological Conservation 142:3060–3067

    Google Scholar 

  • Dell D, Sparks TH, Dennis RLH (2005) Climate change and the effect of increasing spring temperatures on emergence dates on the butterfly Apatura iris (Lepidoptera: Nymphalidae). European J Entomol 102:161–167

    Google Scholar 

  • Diekmann M (2010) Aktuelle Vegetationsveränderungen in Wäldern – Welche Rolle spielt der Klimawandel? Ber Reinhold–Tüxen–Ges 22:57–65

    Google Scholar 

  • Dierschke H (2005) Laurophyllisation – auch eine Erscheinung im nördlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrünen Laubwäldern. Ber Reinhold–Tüxen–Ges 17:151–168

    Google Scholar 

  • Dingemanse NJ, Kalkman VJ (2008) Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol Entomol 33:394–402

    Google Scholar 

  • Dippner JW, Ikauniece A (2001) Long–term zoobenthos variability in the Gulf of Riga in relation to climate variability. J Marine Systems 30:155–164

    Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land use change on alpine vegetation. J Biogeogr 30:401–418

    Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high–altitude endemic species under climate change. Globange Change Biol 17:990–996

    Google Scholar 

  • Dirnböck T, Dullinger S, Essl W, Rabitsch W (2013) Die Alpen im Klimawandel. In: Essl W, Rabitsch F (Hrsg) Biodiversität und Klimawandel. Springer, Berlin, S 192–202

    Google Scholar 

  • Dister E, Henrichfreise A (2009) Veränderungen des Wasserhaushalts und Konsequenzen für den Naturschutz. Natur Landschaft 84:26–31

    Google Scholar 

  • Dorow WHO, Lange A, Querbach A, Brüggemann W (2012) Mediterranean oaks (Quercus spp) and Central European oak–feeding Lepidoptera in Southern Hesse, Germany. Entomol Generalis 34:119–130

    Google Scholar 

  • EC (2007aa) Limiting global climate change to 2 degrees Celsius. The way ahead for 2020 and beyond, impact assessment. Europäische Kommission , Brüssel. http://eur-lex.europa.eu/Lex-UriServ/site/en/com/2007/com2007_002en01.pdf

    Google Scholar 

  • EC (2007bb) Anpassung an den Klimawandel in Europa – Optionen für Maßnahmen der EU. Europäische Kommission, Brüssel, KOM 354. http://eur-lex.europa.eu/Lex-UriServ/site/de/com/2007/com2007_0354de01.pdf

    Google Scholar 

  • Edwards M, Beaugrand G, Reid PC, Rowden AA, Jones MB (2002) Ocean climate anomalies and the ecology of the North Sea. Marine Ecol Progr Ser 239:1–10

    Google Scholar 

  • Ehrich S, Stransky C (2001) Spatial and temporal changes in the southern species component of North Sea fish assemblages. Senckenbergiana maritima 31:143–150

    Google Scholar 

  • Ehrich S, Adlerstein S, Brockmann U, Floeter J, Garthe S, Hinz H, Kröncke I, Neumann H, Reiss H, Sell AF, Stein M, Stelzenmüller V, Stransky C, Temming A, Wegner G, Zauke G-P (2007) 20 years of the German Small–Scale Bottom Trawl Survey (GSBTS). Senckenbergiana marit 37:13–82

    Google Scholar 

  • Eitzinger J, Stastná M, Zalud Z, Dubrovský M (2003) A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61:195–217

    Google Scholar 

  • Ellis WN, Donner JH, Kuchlein JH (1997) Recent shifts in phenology of Microlepidoptera, related to climate change (Lepidoptera). Entomol Ber Amsterdam 57:66–72

    Google Scholar 

  • Ellwanger G, Ssymank A, Pauslsch (Hrsg) (2012) Natura 2000 and climate change – a challenge. Naturschutz Biol Vielfalt, Bd. 118. BfN, Bonn BadGodesberg

    Google Scholar 

  • Erschbamer B, Niederfriniger SR, Eckart W (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862

    Google Scholar 

  • Essl F, Rabitsch W (2013) Biodiversität und Klimawandel – Auswirkungen und Handlungsoptionen für den Naturschutz in Mitteleuropa. Springer, Berlin

    Google Scholar 

  • Essl F, Dullinger S, Plutzar C, Willner W, Rabitsch W (2011) Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. J Biogeogr 38:604–614

    Google Scholar 

  • Essl F, Reich M, Ullrich K (2013) Mobilität und Ausbreitungsdynamik. In: Essl F, Rabitsch W (Hrsg) Biodiversität und Klimawandel. Springer, Berlin, S 101–107

    Google Scholar 

  • Ewert MA, Lang JW, Nielson CE (2005) Geographic variation in the pattern of temperature dependent sex determination in the American snapping turtle (Chelydra serpentina). J Zool 265:81–95

    Google Scholar 

  • Frahm J-P (1997) Zur Ausbreitung von Wassermoosen am Rhein (Deutschland) und an seinen Nebenflüssen seit dem letzten Jahrhundert. Limnol 27:251–261

    Google Scholar 

  • Frahm J-P, Klaus D (1997) Moose als Bioindikatoren von Klimafluktuationen in Mitteleuropa. Erdkunde 51:181–190

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: Climate change of land abandonment? J Veg Sci 18:571–582

    Google Scholar 

  • Gerstengarbe F-W, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung in Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst– und Landwirtschaft sowie die Ableitung erster Perspektiven. PIK Report, Bd. 83. Potsdam–Institut für Klimafolgenforschung, Potsdam

    Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: A long–term study in a Mediterranean Locality. Oecol 146:484–495

    Google Scholar 

  • Grabherr (2003) Alpine vegetation dynamics and climate change – a synthesis of long–term studies and observations. In: Nagy L, Grabherr G, Körner C, Thompson DBA (Hrsg) alpine Biodiversity in Europe. Ecol. Stud.ies, Bd. 167., S 399–409

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climatic effects on mountain plants. Nature 369:448

    CAS  PubMed  Google Scholar 

  • Guy PR (1981) Changes in the biomass and productivity of woodlands on the Sengwa Wildlife Research Area, Zimbabwa. J Appl Ecol 18:507–519

    Google Scholar 

  • Haase P, Hering D, Hoffmann A, Müller R, Nowak C, Pauls S, Stoll S, Straile D (2013) Auswirkungen auf limnische Lebensräume. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 91–105

    Google Scholar 

  • Hagen E, Feistel R (2005) Climatic turning points and regime shifts in the Baltic Sea region: the Baltic winter index (WIBIX) 1659 – 2002. Boreal Environmentel Res 10:211–224

    Google Scholar 

  • Hägg HE, Humborg C, Mörth CM, Medina MR, Wulff F (2010) Scenario analysis on protein consumption and climate change effects on riverine N export to the Baltic Sea. Environ Sc Technol 44:2379–2385

    Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta–analysis of treeline response to climate warming. Ecol Letters 12:1040–1049

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfield RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158 – 2162 Hassal C, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Global Change Biol 13: 933 – 941

    Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerkens AL, Totland O (2009) How does climate warming affect plant–pollinator interactions? Ecol Letters 12:184–195

    Google Scholar 

  • Heubes J, Kühn I, König K, Wittig R, Zizka G, Hahn K (2011) Modelling biome shifts and tree cover change for 2050 in West Africa. J Biogeogr 38:2248–2258

    Google Scholar 

  • Hickler T, Vohland K, Costa L, Miller P, Smith B, Feehan J, Sykes M (2012aa) Vegetation on the move – where do conservation aims have to be re–defined? In: Settele J, Penev L, Georgiev T, Grabaum R, Grobelink V, Hammen V, Klotzs S, Kühn I (Hrsg) Atlas of biodiversity risk. Pensoft, Sofia

    Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller P, Fronzek S, Giesecke T, Kuehn I, Carter T, Smith B, Sykes M (2012bb) Projecting tree species – based climate–driven changes in European potential natural vegetation with a generalized dynamic modal. Global Ecol Biogeogr 21:50–63

    Google Scholar 

  • Hickler T, Bolte A, Hartard B, Beierkuhnlein C, Blaschke M, Blick T, Brüggemann W, Dorow WHO, Fritze M-A, Gregor T, Ibisch P, Kölling C, Kühn I, Musche M, Pompe S, Petercord R, Schweiger Seidling OW, Trautmann S, Waldenspuhl T, Walentowski W, Wellbrock N (2013) Folgen des Klimawandels für die Biodiversität in Wald und Forst. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 164–221

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in British Odonata. Global Change Biol 11:502-506

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol 12:450-455

    Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc Royal Soc London B 269:2163–2171

    CAS  Google Scholar 

  • Hofer RH (1992) Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Ber Inst ETH Stiftung Rübel 58:39–54

    Google Scholar 

  • Hughes DJ, Narayanaswamy BE (2013) Impacts of climate change on deep–sea habitats. MCCIP Sci Review 2013:204–210

    Google Scholar 

  • Hurd BH, Callaway M, Smith J, Kirshen P (2004) Climatic change and US water resources: from modelled watershed impacts to national estimates. J American Water Resources Association 40:129–148

    Google Scholar 

  • Huwer A, Wittig R (2012) Low impact of climate change on species composition of a central European lowland beech forest community. Tuexenia 32:31–54

    Google Scholar 

  • Huwer A, Wittig R (2013) Evidence for increasing homogenization and de–ruderalization of the Central European village flora. Tuexenia 33:213–231

    Google Scholar 

  • IPCC (2001) Climate change 2001 – The scientific basis. Intergovernmental panel on Climate Change, Working Group 1. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007 – The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmospheric Environment 43:51–63

    CAS  Google Scholar 

  • Jacob D, Göttel H, Kotlarsky S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Umweltbundesamt, Climate Change 11/08, Dessau–Roßlau. http://www.umweltdaten.de/publikationen/fpdf-l/3513.pdf. Zugegriffen: 20.1.2012

    Google Scholar 

  • Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long–distance migrants, delays in short–distance migrants. Proc Royal Soc London 270:146–147

    Google Scholar 

  • Johns DG, Edwards M, Greve W, John AWG (2005) Increasing prevalence of the marine cladoceran Penilia avirostris (Dana, 1852) in the North Sea. Helgoland Marine Res 59:214–218

    Google Scholar 

  • Junge C (1978) Die CO2–Zunahme und ihre mögliche Klimaauswirkung. Promet 2/3:21–32

    Google Scholar 

  • Kaufmann R (2001) Invertebrate succession on an Alpine glacier foreland. Ecol 82:2261–2278

    Google Scholar 

  • Kazda M, Verbücheln G, Luwe M, Brans S (1992) Auswirkungen von Grundwasserabsenkungen auf Erlenbruchwälder am Niederrhein. Natur Landschaft 67:283–287

    Google Scholar 

  • Keeling CD (1973) Industrial production of CO2 from fossil fuels and limestone. Tellus 5:174–198

    Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA Jr., Guenther PR, Watermann LS, Chin JFS (1976) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawai. Tellus 28:538–552

    CAS  Google Scholar 

  • Kemp AC, Horton BP, Donelly JP, Mann ME, Vermeer M, Rahmstorf S (2011) Climate related sea–level variations over the past two millennia. Proc National Acad Sci USA 108:11017–11022

    CAS  Google Scholar 

  • Kielgast J, Rödder D, Veith M, Lötters S (2010) Widespread occurence of the amphibian chytrid fungus in Kenya. Animal conservation. 13:36–43

    Google Scholar 

  • Kleinbauer I, Dullinger S, Klingenstein F, May R, Nehring Essl SF (2010) Ausbreitungspotential ausgewählter neophytischer Gefäßpflanzen in Deutschland und Österreich BfN–Skripten. BfN, Bonn–BadGodesberg

    Google Scholar 

  • Klötzli F, Walther G-R, Carraro G, Grundmann A (1996) Anlaufender Biomwandel in Insubrien. Verhandlungen Ges Ökol 26:537–550

    Google Scholar 

  • Kollmann J, Brink-Jensen K, Isermann M (2010) Invasive Pflanzenarten als Indizien des Klimawandels? Die Situation in Dänemark und Norddeutschland. Ber Reinhold–Tüxen–Ges 22:81–95

    Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecol Biogeogr 12:403–410

    Google Scholar 

  • Kromp-Kolb H, Formeyer H (2005) Schwarzbuch Klimawandel. Wieviel Zeit bleibt uns noch? Ecowin, Salzburg

    Google Scholar 

  • Kröncke I, Zeiss B, Rensing C (2001) Long–term variability in macrofauna species composition of the islands of Norderney (East Frisia, Germany), in relation to change in climatic and environmental conditions. Senckenbergiana maritima 31:65–82

    Google Scholar 

  • Kröncke I, Boersma M, Czeck R, Dippner JW, Ehrich S, Exo K-M, Hüppop O, Malzahn A, Marencic H, Markert A, Millat G, Neumann H, Reiss H, Sell AF, Sobottka M, Wehrmann A, Wiltshire KH, Wirtz K (2012) Auswirkungen auf marine Lebensräume. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 106–127

    Google Scholar 

  • Kröncke I, Reiss H, Dippner JW (2013) Effects of cold winters and regime shifts on macrofauna communities in the southern North Sea. J Estuarine Coastal Shelf Sci 119:79–90

    Google Scholar 

  • Kühn I, Vohland K, Badeck F, Hanspach J, Pompe S, Klotz S (2009) Aktuelle Ansätze zur Modellierung der Auswirkungen des Klimawandels auf die biologische Vielfalt. Natur Landschaft 4(8):8–12

    Google Scholar 

  • Kühn I, Pompe S, Trautmann S, Böhning-Gaese K, Essl F, Rabitsch W (2013) Arealänderungen in der Zukunft. In: Essl E, Rabitsch F (Hrsg) Biodiversität und Klimawandel. Springer, Heidelberg, S 86-101

    Google Scholar 

  • Kundzewicz ZW, Döll P (2009) Will groundwater ease freshwater stress under climate change ? Hydrol Sci J 54:665–676

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, S 173–210

    Google Scholar 

  • Kuttler W (2011) Klimawandel im urbanen Bereich, Teil 1, Wirkungen; Climate change in urban areas, part 1, effects. Environmental Sci Europe/DOI: 10.1186/2190–4715–23–11): 1–12

    Google Scholar 

  • Kuttler W, Straßburger A (1999) Air quality measurements in urban green areas. Atmospheric Environment 33:4101–4108

    CAS  Google Scholar 

  • Lehman J (2002) Mixing patterns and plankton biomass of the St. Lawrence Great Lakes under climate change scenarios. J Great Lakes Res 28:583–596

    Google Scholar 

  • Lepetz V, Massot M, Chaine AS, Clobert J (2009) Climate warming and the evolution of morphotypes in a reptile. Global Change Biol 15:454–466

    Google Scholar 

  • Le Quereé C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Metto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Stich S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831-836

    Google Scholar 

  • Leuschner C, Homeier J (2014) Tropische Regenwälder und temperate Laubwälder – Ein struktureller und funktionaler Vergleich. Ber Reinhold-Tüxen Ges 26:119-135

    Google Scholar 

  • Leuschner C, Schipka F (2004) Vorstudie Klimawandel und Naturschutz in Deutschland. BfN Skipten, Bd. 115. BfN, Bonn–BadGodesberg

    Google Scholar 

  • Lindley JA, Kirby RR (2010) Climate–induced changes in the North Sea Decapoda over the last 60 years. Climate Res 42:257–264

    Google Scholar 

  • Loacker K, Kofler W, Pagitz K, Oberhuber W (2007) Spread of walnut (Juglans regia) is correlated with climate warming. Flora 202:70-78 Löffler H (2010) Waldbodenvegetation und Klimawandel? LWF aktuell 76:17-19

    Google Scholar 

  • Loibl W, Beck A, Dorninger M, Formayer H, Gobiet A, Schöner W (2007) Kwiss– program reclip: more research for climate protection: model run evaluation. Systems research, Austrian research center, Seibersdorf

    Google Scholar 

  • Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • MacKenzie BR, Hinrichsen HH, Plikshs M, Wieland K, Zezera AS (2000) Quantifying environmental heterogeneity: Estimating the size of habitat for successful cod egg development in the Baltic Sea. Ecol Progress Ser 193:143–156

    Google Scholar 

  • MacMenamin SK, Hadly EA, Wright CK (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings National Academy of Science USA 105(44):16988–16993

    Google Scholar 

  • Malhi Y, Wright J (2005) Spatial patterns and recent trends in the climate of tropical rainforest regions. In: Malhi Y, Phillips OL (Hrsg) Tropical Forests and Global Atmospheric Change. Oxford University Press, Oxford

    Google Scholar 

  • Manthey M, Leuschner C, Härdtle W (2007) Buchenwälder und Klimawandel. Natur Landschaft 82:441–445

    Google Scholar 

  • Massot M, Clobert J, Ferriere R (2008) Climate warming, dispersal inhibition and extinction risk. Globa Change Biology 14:461–469

    Google Scholar 

  • Meduna E, Schneller JJ, Holderegger R (1999) Prunus laurocerasus L., eine sich ausbreitende nichteinheimische Gehölzart: Untersuchungen zu Ausbreitung und Vorkommen in der Nordostschweiz. Z Ökol Naturschutz 8:147–155

    Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse gas emmision Targets for limiting global warming to 2 °C. Nature 458:1158–1162

    CAS  PubMed  Google Scholar 

  • Menzel (2000) Trends in phenological phases in Europe between 1951 and 1996. International J Biometeorol 44:76-81

    Google Scholar 

  • Menzel A, Jakobi G, Ahas R, Schleifinger H, Estrella N (2003) Variations of the climatological growing season (1951-2000) in Germany compared with other countries. International J Climatol 23:793-812

    Google Scholar 

  • Michler G (2010) Klimaschock. Ursachen, Auswirkungen, Prognosen. H.F. Ullmann, Potsdam

    Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Goettsch Mittermeier C, Lamoreux J, da Fonseca GAB (2004) Hotspots revisited. Cemex, Mexico City

    Google Scholar 

  • Møller AP, Saino N, Adamik P, Ambrosini R, Antonov A, Campobello D, Stokke BG, Fossøy F, Lehikoinen E, Martin-Vivaldi M, Moksnes A, Moskat C, Røskaft E, Rubolini D, Schulze-Hagen K, Soler M, Shykoff JA (2011) Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc R Soc B 278:737–738

    Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW (2005) Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J Mar Sci 62:1270–1280

    Google Scholar 

  • Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) (2012) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Müller-Westermeier G, Booß A, Lefebvre C, Löpmeier F-J, Pietzsch S, Riecke W, Schmitt H (2011) Witterung in Deutschland 2011. Klimastatusbericht. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Neumann H, Kröncke I (2010) Long–term effects on sea surface temperature on the ecological functioning of epifauna in the German Bight. Marine Ecol 32(1):1–9

    Google Scholar 

  • Neumann H, Ehrich S, Kröncke I (2008) Temporal variability of an epibenthic community in the Germen Bight affected by cold winter and climate. Climate Res 37:241–251

    Google Scholar 

  • Neumann H, Ehrich S, Kröncke I (2009a) Variability of epifauna and temperature in the northern North Sea. Marine Biol 156:1817–1826

    Google Scholar 

  • Neumann H, Reiss H, Rakers S, Ehrich S, Kröncke I (2009b) Temporal variability of southern North Sea epifauna communities after the cold winter 1995/1996. ICES J Mar Sci 66:2233–2243

    Google Scholar 

  • Neumann H, de Boois, Kröncke I, Reiss H (2013) Climate change facilitated range expansion of the non–native Angular crab Goneplax rhomboides into the North Sea. Marine Ecol Progr Ser 484:143–153

    Google Scholar 

  • Neumann T (2010) Climate–change effects on the Baltic Sea ecosystem: a model study. J Marine Syst 81:213–224

    Google Scholar 

  • North N, Kljun N, Kasser F, Heldstab J, Maibach M, Reutimann J, Guyer M (2007) Klimaänderungen in der Schweiz. Indikatoren zu Ursachen, Auswirkungen, Maßnahmen Umwelt–Zustand. Bundesamt Umwelt, Bern

    Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Towards European climate risk surfaces: the extent and global distribution of analogous and non–analogous climates. Global Ecol Biogeogr 15:395–405

    Google Scholar 

  • Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programs. Progr Oceanogr 63:1–28

    Google Scholar 

  • Pacifico F, Harrison SP, Jones CD, Sitch S (2009) Isoprene emissions and climate. Atmospheric Environment 43:6121–6135

    CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583

    Google Scholar 

  • Parry M, Lowe J, Hanson C (2009) Overshoot, adapt and recover. Nature 458:1102–1103

    CAS  PubMed  Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biol 13:147–156

    Google Scholar 

  • Pauli H, Gottfried M, Dullinget A, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbarmer B, Fernándes Calzado R, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe´s mountain summits. Sci 336:353–355

    CAS  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912-1915

    Google Scholar 

  • Phillips O, Baker T, Arroyo L, Higuchi N, Killeen T, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill D, Núñez Vargas P, Silva N, Terborgh J, Vásquez Martínez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patiño S, Pitman N, Quesada CA, Saldias TLA, Vinceti B (2005) Amazon tree turnover in the late twentieth century. In: Malhi Y, Phillips OL (Hrsg) Tropical Forests and Global Atmospheric Change. Oxford University Press, Oxford

    Google Scholar 

  • Phillips OL, Aragao LEOC, Lewis SL (2009) Drought sensivity of the Amazonian rain forest. Sci 323:2344–1347 (59 weitere Autoren)

    Google Scholar 

  • Pfeifer MA (2012) Heuschrecken und Klimawandel. Naturschutz Landschaftsplanung 44:205–212

    Google Scholar 

  • Plötner J, Matschke J (2012) Akut–toxische, subletale und indirekte Wirkungen von Glyphosat und glyphosathaltigen Herbiziden auf Amphibien – eine Übersicht. Z Feldherpetol 19:1–20

    Google Scholar 

  • Pompe S, Berger S, Walther G-R, Badeck F, Hanspach J, Sattler S, Klotz S, Kühn I (2009) Mögliche Konsequenzen des Klimawandels für Pflanzenareale in Deutschland. Natur Landschaft 84:2–6

    Google Scholar 

  • Popy S, Bordignon L, Prodon R (2010) A weak upward elevational shift in the distribution of breeding birds in the Italian Alps. J Biogeogr 37:57–67

    Google Scholar 

  • Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an arctic herbivore through trophic mismatch. Phil Trans R Soc B 363:2368–2375

    Google Scholar 

  • Pott R, Remy D (2000) Gewässer des Binnenlandes. Ulmer, Stuttgart

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PR (2006) Widespread amphibian extinctions from endemic disease driven by global warming. Nature 439:161–167

    CAS  PubMed  Google Scholar 

  • Pretzsch H (1999) Changes in forest growth. Forstwissenschaftl Centralblatt 118:228-250

    Google Scholar 

  • Rabitsch W, Essl F (2013) Wie könnten unsere Lebensräume und Landschaften zukünftig aussehen? In: Biodiversität und Klimawandel – Auswirkungen und Handlungsoptionen für den Naturschutz in Mitteleuropa. Springer, Berlin, S 162–171

    Google Scholar 

  • Rabitsch W, Herren T (2013) Klimawandeleffekte heute: Phänologie. In: Essl F, Rabitsch W (Hrsg) Biodiversität und Klimawandel – Auswirkungen und Handlungsoptionen für den Naturschutz in Mitteleuropa. Springer, Berlin, S 52–58

    Google Scholar 

  • Rabitsch W, Essl F, Kühn I, Nehring S, Zangger A, Bühler C (2013) Klimawandeleffekte heute: Arealänderungen. In: Biodiversität und Klimawandel – Auswirkungen und Handlungsoptionen für den Naturschutz in Mitteleuropa. Springer, Berlin, S 59–66

    Google Scholar 

  • Reading CJ (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecol 151:125–131

    CAS  Google Scholar 

  • Reid PS, Edwards M, Beaugrand G, Skogen M, Stevens D (2003) Periodic changes in the zooplankton of the North Sea during the twentieth century linked to oceanic inflow. Fish Oceanogr 12:260–269

    Google Scholar 

  • Reif A (2014) Waldnatur – qua vadis ? Treibende Kräfte und Folgen für die Waldökosysteme in Mitteleuropa. Ber Reinhold–Tüxen–Ges 26:137–150

    Google Scholar 

  • Rödder D, Schulte U (2010) Amphibien und Reptilien im anthropogenen Klimawandel: Was wissen wir und was erwarten wir? Z Feldherpetol 17:1–22

    Google Scholar 

  • Rödder D, Veith M, Lötters S (2008) Environmental gradients explaining prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective. Animal Conservation 11:513–517

    Google Scholar 

  • Rödder D, Kwet A, Lötters S (2009) Translating natural history into geographic space: a macroecological perspective on the North American Slider, Trachemys scripta (Reptilia, Cryptodira, Emydidae). J Natural History 43:2525–2536

    Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Global Change Biol 6:407–416

    Google Scholar 

  • Rutherford MC, Midgeley GF, Bond WJ, Powrie LW, Roberts R, Allsopp L (1999) Plant biodiversity: vulnerability and adaptation assessment. South African Country Study on Climate Change. National Botanical Institute, Kapstadt

    Google Scholar 

  • Saino N, Rubolini D, Lehikoinen E, Sokolov LV, Bonisoli-Alquati A, Ambrosini R, Boncoraglio G, Møller AP (2009) Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol Letters 5:539–541

    Google Scholar 

  • Sauer J, Domisch S, Nowak C, Haase P (2011) Low mountain ranges – summit traps for montane freshwater species under climate change. Biodiversity Conservation 20:3133–3146

    Google Scholar 

  • Scheiffarth G, Frank D (2006) Eiderentensterben im niedersächsischen Wattenmeer: der Einfluss der Nahrungsqualität auf Bestand und Kondition der Eiderente. Unveröff Abschlussbericht des Projektes 16/00 der Niedersächsischen Wattenmeerstiftung. Institut für Vogelforschung Vogelwarte Helgoland, Wilhelmshaven

    Google Scholar 

  • Scheiter S, Higgins SI (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach (aDGVM). Global Change Biol 15:2224–2246

    Google Scholar 

  • Schlumprecht H, Bittner T, Jaescke A, Jentsch A, Reineking B, Beierkuhnlein C (2010) Gefährdungsdisposition von FFH–Tierarten Deutschlands angesichts des Klimawandels. Naturschutz Landschaftspflege 42:293–303

    Google Scholar 

  • Schlüter MH, Merico A, Reginatto M, Boersma M, Wiltshire KH, Grewe W (2010) Phenological shifts of three interacting zooplankton groups in relation to climate change. Global Change Biol 16:3144–3153

    Google Scholar 

  • Schmidt A, Wehrmann A, Dittmann S (2008) Population dynamics of the invasive pacific oyster Crassostrea gigas during the early stages of an outbreak in the Wadden Sea (Germany). Helgoland Marine Res 62:367–376

    Google Scholar 

  • Schmidt A, Wehrmann A, Dittmann S (2010) Low mortality rates of juvenile pacific oysters in the Germen Wadden Sea are characteristic for invasive species: A reply to Beukema & Dekker. Helgoland Mer Res 64:71–73

    Google Scholar 

  • Schneeweiß N (2003) Demographische und ökologische Situation der Arealrand–Populationen der Europäischen Sumpfschildkröte in Brandenburg. Studien Tagungsber Landesumweltamt Brandenburg 46:1–106

    Google Scholar 

  • Schönborn W (1992) Fließgewässer. G. Fischer, Stuttgart

    Google Scholar 

  • Schönrock S, Schmidt G, Schröder W (2013) Klimabiomonitoring: Untersuchung der Pflanzenphänologie auf lokaler Ebene und ihr Vergleich mit regionalen und nationalen Daten. Natur Landschaft 88:14–21

    Google Scholar 

  • Schönwiese CD, Staeger T, Trömel S (2006) Klimawandel und Extremereignisse in Deutschland. Klimastatusbericht 2005. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Schückel U, Ehrich S, Kröncke I (2010) Temporal variability of three macrofauna communities in the northern North Sea. Estuar Coastal Shelf Sci 89:1–11

    Google Scholar 

  • Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemuller R, Petanidou T, Potts SG, Pyšek P, Stout JC, Sykes MT, Tscheulin T, Vilá M, Walther GR, Westphal C, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Reviews 85:777–795

    Google Scholar 

  • Scott WA, Pithart D, Adamson JK (2008) Long–Term United Kingsom trends in the breeding phenology of the common frog, Rana temporaria. J Herpetol 42:89–96

    Google Scholar 

  • Sell A, Ehrich S, Rieck N, Stelzenmuller V, Wegner G (2010) Climate change and spatial scales: Evaluating responses in bottom fish communities. Proc 2010 AGU Ocean Sciences Meeting, Portland, Oregon, 22. – 26. Feb 2010.

    Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, van Halder I, Veling K, Vliegenhart A, Wynhoff I, Schweiger O (2008) Climatic Risk Atlas o European Butterflies. BioRisk 1, Pensoft Sofia, Moscow

    Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins McDonald SKR, Phillott AD, Hines HB, Kenyon N (2007) Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. EcoHealth 4:125–134

    Google Scholar 

  • Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W, Mastanrandrea MD, Patwardhan A, Burton I, Corfee-Morlot J, Magadza CHD, Füssel HM, Pittock AB, Rahmann A, Suarez A, van Ypersele J-P (2009) Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPPC) ‘reasons for concern. Proc National Acad Sci USA 106:4133–4137

    CAS  Google Scholar 

  • Sparks TH, Dennis RLH, Croxton PJ, Cade M (2007) Increased migration of Lepidoptera linked to climate change. Eur J Entomol 104:139-143

    Google Scholar 

  • Stefanescu C, Penuelas J, Fillela I (2003) Effects of climate change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biol 9:1494–1506

    Google Scholar 

  • Steinel A, Houben G, Himmelsbach T (2012) Auswirkungen auf das Grundwasser. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny ( V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 57–90

    Google Scholar 

  • Steinger T, Körner C, Schmid B (1996) Long–term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecol 105:94–99

    Google Scholar 

  • Stervander M, Lindström A, Jonzén M, Andersson A (2005) Timing of spring migration of birds: long–term trends, North Atlantic Oscillation and the significance of different migration routes. J Avian Biol 36:210–221

    Google Scholar 

  • Streit B, Böhning-Gaese K, Mosbrugger V (2011) Biodiversität und Klima: Wandel in vollem Gange! Biol unserer Zeit 41:248–255

    Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (Hrsg) (2008) Threatened amphibians of the word. Lynx Edicions Barcelona, IUCN and Conservation International, Gland und Arlington

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: A review. Clim Chang 50:77–109

    CAS  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213-213

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsfeld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Tryjanowski P, SparksT, Profus P (2005) Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Diversity Distribution 11:219–223

    Google Scholar 

  • Tryjanowski P, Sparks T, Rybacki M, Berger L (2006) Is body size of the water frog Rana esculenta complex responding to climate change? Naturwissenschaften 93: 110–113 Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Letters 11: 1351–1363

    Google Scholar 

  • UNFCC (2009) Report of the conference of the parties on its fifteens session, held in Copenhagen from 7 to 19 December 2009.. http:/un–fccc.int/resource/docs/2009/cop15/eng/11a01.pdf. Zugegriffen: 25.1.2011

    Google Scholar 

  • van de Pol M, Ens BJ, Heg D, Brouwer L, Krol J, Maier Exo MK-M, Oosterbeek K, Lok T, Eising CM, Koffibergk (2010) Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds? J Appl Ecol 47(4):720–730

    Google Scholar 

  • van Oppen MJ, Lough JM (2008) Coral Bleaching. Springer, Heidelberg

    Google Scholar 

  • Visser ME, Hollemann LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc B 268:289–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vittoz P, Dussex N, Wassel J, Guisan A (2009) Diaspore traits discriminate good from weak colonisers on high–elevation summits. Basic Appl Ecol 10:508–515

    Google Scholar 

  • Von Maltitz GP, Scholes RJ (2006) Vulnerability of Southern African fauna and flora to climate change. AIACC Working Paper, Bd. 24. AIACC Project Office, Washington DC

    Google Scholar 

  • Wake DB (2007) Climate change implicated in amphibian and lizard declines. Proceedings National Aca Sci USA 104:8201–8202

    CAS  Google Scholar 

  • Walther G-R, Burga CA, Edwards PJ (2001) “Fingerprints” of Climate Change. Kluwer, NewYork

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  PubMed  Google Scholar 

  • Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. ICES J Marine Sci 60:177–186

    Google Scholar 

  • Wechsung F, Becke A, Gräfe P (2005) GLOWA–ELBE I – Integrierte Analyse der Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet PIK Report, Bd. 95. Potsdam Institut für Klimaforschung, Potsdam

    Google Scholar 

  • Wedekind C, Küng C (2010) Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae). Conservation Biol 24:1418–1423

    Google Scholar 

  • Wehrmann A, Herlyn M, Bungenstock F, Hertweck G, Millat G (2000) The distribution gap is closed – First record of natural settled pacific oysters Crassostrea gigas in the East Frisian Wadden Sea, North Sea. Senckenbergiana maritima 30:153–160

    Google Scholar 

  • Wilderer P (Hrsg) (2011) Treatise on water science Bd. 2. Elsevier, Amsterdam

    Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no–analog communities, and ecological surprises. Front Ecol Environnment 5:475–482

    Google Scholar 

  • Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc National Acad Sci USA 104:5738–5742

    CAS  Google Scholar 

  • Wiltshire K-H, Bartsch I, Boersma M, Franke HD, Freund JA, Gebühr C, Gerdts G, Kraberg A, Stockmann K, Wichels A (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310

    CAS  Google Scholar 

  • Wittig R (2012) Geobotanik. Haupt, Bern

    Google Scholar 

  • Wittig R, Nawrath S (2000) Welche Pflanzenarten und –gesellschaften Hessens sind bei einer globalen Temperaturerhöhung gefährdet? – Vorschläge für ein Biomonitoring. Geobot Kolloq 15:59–69

    Google Scholar 

  • Wittig R, König K, Schmidt M, Szarzynski J (2007) A study of climate change and anthropogenic impacts in West Africa. Environmental Sci Pollution Res 14:182–189

    Google Scholar 

  • Wittig R, Kuttler W, Tackenberg O (2012) Urban–industrielle Lebensräume. In: Mosbrugger V, Brasseur G, Schaller M, Stribrny V (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 290–307

    Google Scholar 

  • Zhou Y, Zwahlen F, Wang Y, Li Y (2010) Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeol J 18:1571–1582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Wittig Prof. Dr. .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wittig, R., Niekisch, M. (2014). Die Auswirkungen des Klimawandels auf die Biodiversität. In: Biodiversität: Grundlagen, Gefährdung, Schutz. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54694-5_12

Download citation