Skip to main content

Development and Developmental Disorders of the Forebrain

  • Chapter
  • First Online:
Clinical Neuroembryology

Abstract

Neurulation has been extensively studied in amphibian, avian and mammalian embryos and occurs in four stages: formation of the neural plate, shaping of the neural plate, bending of the neural plate and closure of the neural groove. The rostral part of the neural tube develops into the brain, whereas the caudal part becomes the spinal cord. This is the primary type of neurulation (Sect. 4.2). The most caudal part of the neural tube forms by aggregation of cells into a medullary cord which then cavitates and connects to the main neural tube. This process is called secondary neurulation (Sect. 4.3).

Neural tube defects (NTDs) are among the most common of human malformations with an incidence of 1-5 per 1,000 live births. Genetic mouse models for NTDs are discussed in Sect. 4.4, the aetiology of human NTDs in Sect. 4.5 and prenatal diagnosis and fetal therapy in Sect. 4.6. Cranial neural tube defects (anencephaly, encephaloceles and cranial meningoceles) are discussed in Sect. 4.7 and illustrated in several Clinical cases. In Sect. 4.8, spinal neural tube defects are discussed and again illustrated in several Clinical cases, followed by the Chiari malformations (Sect. 4.9) and caudal dysgenesis (Sect. 4.10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP et al (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809

    CAS  PubMed  Google Scholar 

  • Adelmann HB (1929a) Experimental studies on the development of the eye. I. The effect of the removal of median and lateral areas of the anterior end of the urodelan neural plate on the development of the eyes (Triton teniatus and Amblystoma punctatum). J Exp Zool 54:249–290

    Google Scholar 

  • Adelmann HB (1929b) Experimental studies on the development of the eye. II. The eye-forming potencies of the median portions of the urodelan neural plate (Triton teniatus and Amblystoma punctatum). J Exp Zool 54:291–317

    Google Scholar 

  • Adelmann HB (1930) Experimental studies on the development of the eye. III. The effect of the substrate (‘Unterlagerung’) on the heterotopic development of median and lateral strips of the anterior end of the neural plate of Amblystoma. J Exp Zool 57:223–281

    Google Scholar 

  • Adelmann HB (1936a) The problem of cyclopia, part I. Q Rev Biol 11:116–182

    Google Scholar 

  • Adelmann HB (1936b) The problem of cyclopia, part II. Q Rev Biol 11:284–364

    Google Scholar 

  • Aeby A, Liu Y, De Tiège X, Denolin Y, David P, Balériaux D et al (2009) Maturation of thalamic radiations between 34 and 41 weeks’ gestation: a combined voxel-based study and probabilistic tractography with diffusion tensor imaging. AJNR Am J Neuroradiol 30:1780–1786

    CAS  PubMed  Google Scholar 

  • Aicardi J (1998) Disorders of visual perception. In: Aicardi J (ed) Diseases of the nervous system in childhood, 2nd edn. Mac Keith, London, pp 675–688

    Google Scholar 

  • Aicardi J, Chevrie JJ, Baraton J (1987) Agenesis of the corpus callosum. Handb Clin Neurol 50:149–173

    Google Scholar 

  • Albin RL, Young AR, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 483–582

    Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 495–578

    Google Scholar 

  • Almqvist PM, Akesson E, Wahlberg LU, Pschera H, Seiger Å, Sundström E (1996) First trimester development of the human nigrostriatal dopamine system. Exp Neurol 139:227–237

    CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1978a) Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 182:945–972

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1978b) Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J Comp Neurol 192:973–994

    Google Scholar 

  • Altman J, Bayer SA (1979a) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188:455–472

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1979b) Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J Comp Neurol 188:473–500

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1979c) Development of the diencephalon in the rat. VI. Re-evaluation of the embryonic development of the thalamus on the basis of thymidine-radiographic datings. J Comp Neurol 188:501–524

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1981) Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    CAS  PubMed  Google Scholar 

  • Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Mountcastle VB, Plum F, Geiger SR (eds) Handbook of physiology, sect I: the nervous system, part 1, vol 5. American Physiological Society, Bethesda, pp 211–294

    Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    CAS  PubMed  Google Scholar 

  • Andersen H, von Bülow FA, Mollgård K (1971) The early development of the pars distalis of the human foetal pituitary gland. Z Anat Entwicklungsgesch 135:117–138

    CAS  PubMed  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubinstein JLR (1997a) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    CAS  PubMed  Google Scholar 

  • Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses JJ, Pedersen RA, Rubinstein JLR (1997b) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19:27–37

    CAS  PubMed  Google Scholar 

  • Anderson SA, Mione M, Yun K, Rubinstein JLR (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneurogenesis. Cereb Cortex 9:646–654

    CAS  PubMed  Google Scholar 

  • Anderson SA, Marín O, Horn C, Jennings K, Rubinstein JLR (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363

    CAS  PubMed  Google Scholar 

  • Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139:129–188

    PubMed  Google Scholar 

  • Angevine JB Jr (1978) Embryogenesis and phylogenesis in the limbic system. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. The continuing evolution of the limbic system concept. Plenum, New York, pp 23–46

    Google Scholar 

  • Apkarian P, Bour L, Barth PG (1993) A unique achiasmatic anomaly detected in non-albinos with misrouted retinal-fugal projections. Eur J Neurosci 6:501–507

    Google Scholar 

  • Apkarian P, Bour L, Barth PG, Wenniger-Prick L, Verbeeten B (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216

    PubMed  Google Scholar 

  • Armstrong E (1990) Limbic thalamus: Anterior and mediodorsal nuclei. In: Paxinos G (ed) The Human Nervous System. Academic, San Diego, CA, pp 469–481

    Google Scholar 

  • Asa SL, Kovacs K, Laszlo FA, Domokos I, Ezrin C (1986) Human fetal adenohypophysis. Histologic and immunocytochemical analysis. Neuroendocrinology 43:308–316

    CAS  PubMed  Google Scholar 

  • Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC (1988) Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48:423–431

    CAS  PubMed  Google Scholar 

  • Asakura Y, Toyota Y, Muroya K, Kurosawa K, Aida N, Kawane H et al (2008) Endocrine and radiological studies in patients with molecularly confirmed CHARGE syndrome. J Clin Endocrinol Metab 93:920–924

    CAS  PubMed  Google Scholar 

  • Ashton W (1970) Retinal angiogenesis in the human embryo. Br Med Bull 26:103–106

    CAS  PubMed  Google Scholar 

  • Ashwell KWS, Waite PME (2004) Development of the peripheral nervous system. In: Paxinos G, Mai JK (eds) The Human Nervous System, 2nd edn. Elsevier, Amsterdam, pp 95–110

    Google Scholar 

  • Atwell WJ (1926) The development of the hypophysis cerebri in man, with special reference to the pars tuberalis. Am J Anat 37:159–193

    Google Scholar 

  • Aubert I, Brana C, Pellevoisin C, Giros B, Caillé I, Carles D et al (1997) Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 379:72–87

    CAS  PubMed  Google Scholar 

  • Auladell C, Pérez-Sust P, Supèr H, Soriano E (2000) The early development of thalamocortical and corticothalamic projections in the mouse. Anat Embryol (Berl) 201:169–179

    CAS  Google Scholar 

  • Aza-Blanc P, Kornberg TB (1999) Ci: A complex transducer of the hedgehog signal. Trends Genet 15:458–462

    CAS  PubMed  Google Scholar 

  • Baenziger O, Martin E, Steinlin M, Good M, Largo R, Burger R et al (1993) Early pattern recognition in severe perinatal asphyxia: a prospective MRI study. Neuroradiology 35:437–442

    CAS  PubMed  Google Scholar 

  • Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    CAS  PubMed  Google Scholar 

  • Ballabio A, Rugarli EI (2001) Kallmann syndrome. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The Metabolic & Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, pp 5729–5740

    Google Scholar 

  • Barishak YR (2001) Embryology of the Eye and Its Adnexa, 2nd edn. Karger, Basel

    Google Scholar 

  • Barkovich AJ (2000) Pediatric Neuroimaging, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Barkovich AJ, Norman D (1989) Absence of the septum pellucidum: a useful sign in the diagnosis of congenital brain malformations. Am J Radiol 152:353–360

    CAS  Google Scholar 

  • Barkovich AJ, Quint DJ (1993) Middle interhemispheric fusion: an unusual variant of holoprosencephaly. AJNR Am J Neuroradiol 14:431–440

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Fram EK, Norman D (1989) Septo-optic dysplasia: MR imaging. Radiology 171:189–192

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Simon EM, Clegg NJ, Kinsman SL, Hahn JS (2002) Analysis of the cerebral cortex in holoprosencephaly with attention to the sylvian fissures. AJNR Am J Neuroradiol 23:143–150

    PubMed  Google Scholar 

  • Basel-Vanagaite L, Straussberg R, Ovadia H, Kaplan A, Magal N, Shorer Z et al (2004) Infantile bilateral striatal necrosis maps to chromosome 19q. Neurology 62:87–90

    CAS  PubMed  Google Scholar 

  • Bayer SA (1980) Quantitative radiographic analysis of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875

    CAS  PubMed  Google Scholar 

  • Bayer SA (1983) [3H]Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    CAS  PubMed  Google Scholar 

  • Bayer SA (1984) Neurogenesis in the rat neostriatum. Int J Dev Neurosci 2:163–175

    CAS  PubMed  Google Scholar 

  • Bayer SA (1985a) Neurogenesis in the olfactory tubercle and islands of Calleja in the rat. Int J Dev Neurosci 3:135–147

    CAS  PubMed  Google Scholar 

  • Bayer SA (1985b) Neurogenesis in the magnocellular basal telencephalic nuclei in the rat. Int J Dev Neurosci 3:229–243

    CAS  PubMed  Google Scholar 

  • Bayer SA (1986a) Neurogenesis in the anterior olfactory nucleus and its associated transition areas in the rat brain. Int J Dev Neurosci 4:225–249

    CAS  PubMed  Google Scholar 

  • Bayer SA (1986b) Neurogenesis in the rat primary olfactory cortex. Int J Dev Neurosci 4:251–271

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1987a) Development of the preoptic area: time and site of origin, migratory routes, and settling of its neurons. J Comp Neurol 265:65–95

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1987b) Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog Neurobiol 29:57–106

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1995a) Neurogenesis and migration. In: Paxinos G (ed) The Rat Nervous System, 2nd edn. Academic, San Diego, CA, pp 1041–1078

    Google Scholar 

  • Bayer SA, Altman J (1995b) Principles of neurogenesis, neuronal migration, and neural circuit formation. In: Paxinos G (ed) The Rat Nervous System, 2nd edn. Academic, San Diego, CA, pp 1079–1098

    Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric Neuropathology. Williams & Wilkins, Baltimore, MD, pp 54–107

    Google Scholar 

  • Belloni E, Muenke M, Roessler E, Traverso G, Siegel-Bartelt J, Frumkin A et al (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14:353–356

    CAS  PubMed  Google Scholar 

  • Bendavid C, Dupé V, Rochard L, Gicquel I, Dubourg C, David V (2010) Holoprosencephaly: An update on cytogenetic abnormalities. Am J Med Genet C Semin Med Genet 154C:86–92

    PubMed  Google Scholar 

  • Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: An immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol (Berl) 81:345–348

    CAS  Google Scholar 

  • Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    CAS  PubMed  Google Scholar 

  • Berliner DL, Monti-Bloch L, Jennings-White C, Diaz-Sanchez V (1996) The functionality of the human vomeronasal organ (VNO): evidence for steroid receptors. J Steroid Biochem Mol Biol 58:259–265

    CAS  PubMed  Google Scholar 

  • Berman JI, Glass HC, Miller SP, Mukherjee P, Ferreiro DM, Barkovich AJ et al (2009) Quantitative fiber tracking analysis of the optic radiation correlates with visual performance in premature newborns. AJNR Am J Neuroradiol 30:120–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biesecker LG (2008) GLI3 and the Pallister-Hall and Greig cephalopolysyndactyly syndromes. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn Errors of Development, 2nd edn. Oxford University Press, Oxford, pp 313–321

    Google Scholar 

  • Blaas H-GK, Eriksson AG, Salvesen KÅ, Isaksen CV, Christensen B, Møllerløkken G, Eik-Nes SH (2002) Brains and faces in holoprosencephaly: pre- and postnatal description of 30 cases. Ultrasound Obstet Gynecol 19:24–38

    CAS  PubMed  Google Scholar 

  • Blakemore C, Molnár Z (1990) Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex. Cold Spring Harb Symp Quant Biol 55:491–504

    CAS  PubMed  Google Scholar 

  • Boehm N, Roos J, Gasser B (1994) Luteinizing hormone-releasing hormone (LHRH)-expressing cells in the nasal septum of human fetuses. Brain Res Dev Brain Res 82:175–180

    CAS  PubMed  Google Scholar 

  • Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol (Berl) 161:225–236

    CAS  Google Scholar 

  • Boyd JD (1956) Observations on the human pharyngeal hypophysis. J Endocrinol 14:66–77

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1987) The hypothalamus of the human adult: chiasmatic region. Anat Embryol (Berl) 176:315–330

    Google Scholar 

  • Braak H, Braak E (1992) Anatomy of the human hypothalamus (chiasmatic and tuberal regions). Prog Brain Res 93:3–16

    CAS  PubMed  Google Scholar 

  • Braddock SR, Grafe MR, Jones KL (1995) Development of the olfactory nerve: its relationship to the craniofacies. Teratology 51:252–256

    CAS  PubMed  Google Scholar 

  • Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, O’Leary DDM (2000) Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J Neurosci 20:5792–5801

    CAS  PubMed  Google Scholar 

  • Brana C, Charron G, Aubert I, Carles D, Martin-Negrier ML, Trouette H et al (1995) Ontogeny of the striatal neurons expressing neuropeptide genes in the human fetus and neonate. J Comp Neurol 360:488–505

    CAS  PubMed  Google Scholar 

  • Brana C, Caillé I, Pellevoisin C, Charron G, Aubert I, Caron MG et al (1996) Ontogeny of the striatal neurons expressing the D1 dopamine receptors in humans. J Comp Neurol 370:23–34

    CAS  PubMed  Google Scholar 

  • Brand S, Rakic P (1979) Genesis of the primate neostriatum: [3H]Thymidine autoradiographic analysis of the time of neuron origin in the rhesus monkey. Neuroscience 4:767–778

    CAS  PubMed  Google Scholar 

  • Brand S, Rakic P (1984) Cytodifferentiation and synaptogenesis in the neostriatum of fetal and neonatal rhesus monkeys. Anat Embryol (Berl) 169:21–34

    CAS  Google Scholar 

  • Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. Ann Intern Med 63:563–568

    Google Scholar 

  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69:49–69

    PubMed  Google Scholar 

  • Brewer DB (1957) Congenital absence of the pituitary gland and its consequences. J Pathol Bacteriol 73:59–67

    Google Scholar 

  • Brewer GJ, Fink JK, Hedera P (1999) Diagnosis and treatment of Wilson’s disease. Semin Neurol 19:261–270

    CAS  PubMed  Google Scholar 

  • Brickman JM, Clements M, Tyrell R, McNay D, Woods K, Warner J et al (2001) Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development 128:5189–5199

    CAS  PubMed  Google Scholar 

  • Broaddus E, Patno D, Reid J, Chapa J, Traboulsi EI, Singh AD (2012) Prenatal imaging of the eye and ocular adnexae. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 163–173

    Google Scholar 

  • Brodsky MC, Hoyt WF, Hoyt CS, Miller NR, Lam BL (1995) Atypical retinochoroidal coloboma in patients with dysplastic optic discs and transsphenoidal encephaloceles. Arch Ophthalmol 113:624–628

    CAS  PubMed  Google Scholar 

  • Brooks BP, Traboulsi EI (2012) Congenital anomalies of the optic nerve. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 124–149

    Google Scholar 

  • Brown GK, Brown RM, Scholem RD, Kirby DM, Dahl H-HM (1989) The clinical and biochemical spectrum of human pyruvate dehydrogenase complex deficiency. Ann NY Acad Sci 573:360–368

    CAS  PubMed  Google Scholar 

  • Brown SA, Warburton D, Brown LY, Yu C, Roeder ER, Stengel-Rutkowski S et al (1998) Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 20:180–183

    CAS  PubMed  Google Scholar 

  • Brückner G, Mares V, Biesold D (1976) Neurogenesis in the visual system of the rat: an autoradiographic investigation. J Comp Neurol 166:245–256

    PubMed  Google Scholar 

  • Bruyn GW (1977) Agenesis septi pellucidi, cavum septi pellucidi, cavum Vergae, and cavum veli interpositi. Handb Clin Neurol 30:299–316

    Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubinstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2, (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal boundaries. J Neurosci 13:3155–3172

    CAS  PubMed  Google Scholar 

  • Bulfone A, Wang F, Hevner RF, Anderson SA, Cutforth T, Chen S et al (1998) An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21:1273–1282

    CAS  PubMed  Google Scholar 

  • Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL et al (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12:376–384

    CAS  PubMed  Google Scholar 

  • Butt SJ, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimra S, Fishell G (2008) The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59:722–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell K (2003) Dorsal-ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol 13:50–56

    CAS  PubMed  Google Scholar 

  • Camper S, Suh H, Raetzman L, Douglas K, Cushman L, Nasonkin I et al (2002) Pituitary gland development. In: Rossant J, Tam PPL (eds) Mouse development – patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 499–518

    Google Scholar 

  • Carson MJ, Slager UT, Steinberg RM (1977) Simultaneous occurrence of diabetes mellitus, diabetes insipidus, and optic atrophy in a brother and sister. Am J Dis Child 131:1382

    CAS  PubMed  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534

    CAS  PubMed  Google Scholar 

  • Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129:1871–1880

    CAS  PubMed  Google Scholar 

  • Chédotal A, Rijli FM (2009) Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 193:139–145

    Google Scholar 

  • Chevrie JJ, Aicardi J (1986) Aicardi syndrome. In: Pedley TA, Meldrum BS (eds) Recent advances in epilepsy, vol 3. Churchill Livingstone, Edinburgh, pp 189–210

    Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    CAS  PubMed  Google Scholar 

  • Chong BW, Newton TH (1993) Hypothalamic and pituitary pathology. Radiol Clin North Am 31:1147–1183

    CAS  PubMed  Google Scholar 

  • Chow CW, Haan EA, Goodman SI, Anderson RMD, Evans WA, Kleinschmidt-DeMasters BK et al (1988) Neuropathology in glutaric acidaemia type 1. Acta Neuropathol (Berl) 76:590–594

    CAS  Google Scholar 

  • Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18 FDG positron emission tomography. Science 231:840–843

    CAS  PubMed  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    CAS  PubMed  Google Scholar 

  • Cobos I, Broccoli V, Rubinstein JLR (2005a) The vertebrate ortholog of aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol 483:292–303

    CAS  PubMed  Google Scholar 

  • Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubinstein JLR (2005b) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068

    CAS  PubMed  Google Scholar 

  • Cobos I, Borello U, Rubinstein JLR (2007) Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54:873–888

    CAS  PubMed  Google Scholar 

  • Cohen MM Jr (1989a) Perspectives on holoprosencephaly: part I. Epidemiology, genetics, and syndromology. Teratology 40:211–235

    PubMed  Google Scholar 

  • Cohen MM Jr (1989b) Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. Am J Med Genet 34:271–288

    PubMed  Google Scholar 

  • Cohen MM Jr (2010) Hedgehog signaling update. Am J Med Genet A 152A:1875–1914

    CAS  PubMed  Google Scholar 

  • Cohen MM Jr, Shiota K (2002) Teratogenesis of holoprosencephaly. Am J Med Genet 109:1–15

    PubMed  Google Scholar 

  • Cohen MM Jr, Sulik KK (1992) Perspectives on holoprosencephaly: part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. J Craniofac Genet Dev Biol 12:196–244

    PubMed  Google Scholar 

  • Cohen NR, Taylor CJSH, Scott LB, Guillery RW, Soriano P, Furley AJW (1997) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 8:26–33

    Google Scholar 

  • Colohan ART, Grady MS, Bonnin JM, Thorner MO, Kovacs K, Jane JA (1987) Ectopic pituitary gland simulating a suprasellar tumor. Neurosurgery 20:43–48

    CAS  PubMed  Google Scholar 

  • Colombo E, Galli R, Cossu G, Gécz J, Broccoli V (2004) Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult stem cells and forebrain GABAergic neurons. Dev Dyn 231:631–639

    CAS  PubMed  Google Scholar 

  • Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubinstein JLR (2007) Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci 27:4786–4798

    CAS  PubMed  Google Scholar 

  • Conklin JL (1968) The development of the human fetal adenohypophysis. Anat Rec 160:79–91

    CAS  PubMed  Google Scholar 

  • Conte I, Morcillo J, Bovolenta P (2005) Comparative analysis of Six3 and Six6 distribution in the developing and adult mouse brain. Dev Dyn 234:718–725

    CAS  PubMed  Google Scholar 

  • Cooper ERA (1945) The development of the human lateral geniculate body. Brain 68:222–239

    CAS  PubMed  Google Scholar 

  • Cooper ERA (1946) The development of the human substantia nigra. Brain 69:22–33

    Google Scholar 

  • Cooper ERA (1950) The development of the thalamus. Acta Anat (Basel) 9:201–226

    Google Scholar 

  • Corbin JG, Gaiano N, Machold RP, Langston A, Fishell G (2000) The Gsh2 homeodomain gene controls multiple aspects of telecephalic development. Development 127:5007–5020

    CAS  PubMed  Google Scholar 

  • Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    CAS  PubMed  Google Scholar 

  • Cordero D, Marcucio R, Hu D, Gaffield W, Tapadia M, Helms JA (2004) Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J Clin Invest 114:485–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corsellis JAN, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303

    CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic congenital abnormalities. Dev Biol 120:198–214

    CAS  PubMed  Google Scholar 

  • Cremers CWRJ, Wijdeveld PGAB, Pinckers AJLG (1977) Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram’s syndrome): A review of 88 cases from the literature with personal observations on 3 new patients. Adv Paed Scand (Suppl) 264:3–16

    Google Scholar 

  • Croen LA, Shaw GM, Lammer EJ (1996) Holoprosencephaly: Epidemiologic and clinical characteristics of a California population. Am J Med Genet 64:465–472

    CAS  PubMed  Google Scholar 

  • Crosby EC, Humphrey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol 74:309–352

    Google Scholar 

  • Crosby EC, Woodburne RT (1940) The comparative anatomy of the preoptic area and the hypothalamus. Proc Assoc Res Nerv Ment Dis 20:52–169

    Google Scholar 

  • Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775

    CAS  PubMed  Google Scholar 

  • Dahmane N, Sánchez P, Gitton Y, Palma V, Sun T, Beyna M et al (2001) The sonic hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128:5201–5212

    CAS  PubMed  Google Scholar 

  • Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17:346–349

    CAS  PubMed  Google Scholar 

  • Daikoku S, Chikamori M, Adachi T, Maki Y (1982) Effect of basal diencephalon on the development of Rathke’s pouch in rats: a study in combined organ culture. Dev Biol 90:198–202

    CAS  PubMed  Google Scholar 

  • Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22:323–330

    CAS  PubMed  Google Scholar 

  • Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C (2009) Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Biol 16:576–587

    CAS  Google Scholar 

  • Darin N, Oldfors A, Moslemi A-R, Tulinius M (2001) The incidence of mitochondrial encephalomyopathies in childhood: Clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol 49:377–383

    CAS  PubMed  Google Scholar 

  • Dasen JS, Barbera JP, Herman TS, Connell SO, Olsen L, Ju B et al (2001) Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15:3193–3207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dattani MT, Robinson JC (2000) The molecular basis for developmental disorders of the pituitary gland in man. Clin Genet 57:337–346

    CAS  PubMed  Google Scholar 

  • Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL et al (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 19:125–133

    CAS  PubMed  Google Scholar 

  • Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Wales JKH et al (1999) HESX1: a novel gene implicated in a familial form of septo-optic dysplasia. Acta Paediatr Suppl 88:49–54

    CAS  PubMed  Google Scholar 

  • de Carlos JA, López-Mascaraque L, Valverde F (1995) The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 68:1167–1178

    PubMed  Google Scholar 

  • de Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • de Morsier G (1956) Etudes sur les dysraphies crânio-encéphaliques. III. Agénésie du septum lucidum avec malformation du tractus optique. La dysplasie septo-optique. Schweiz Arch Neurol Psychiatr 77:267–292

    Google Scholar 

  • de Olmos J (1990) Amygdaloid nuclear gray complex. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 583–710

    Google Scholar 

  • de Olmos J (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 739–868

    Google Scholar 

  • de San M, Juan A (1856) Teratologia: falta total de los nervios olfactorios con anosmian en un individuo en quien existia un atrofia congenita de los testiculos y membro viril. El Siglo Med 3:211 (Quoted from Ballabio and Rugarli 2001)

    Google Scholar 

  • Deacon TW, Pakzaban P, Isacson O (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: Neural transplantation and developmental evidence. Brain Res 668:211–219

    PubMed  Google Scholar 

  • Decker RE (1985) The ectopic pituitary gland in cases of craniopharyngiomas. Report of two cases. J Neurosurg 62:291–292

    CAS  PubMed  Google Scholar 

  • Dekaban A (1954) Human thalamus: an anatomical, developmental, and pathological study. II. Development of the human thalamic nuclei. J Comp Neurol 100:63–97

    CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, sect 1: the nervous system, vol 2, Motor control. American Physiological Society, Bethesda, pp 1017–1061

    Google Scholar 

  • Demb JB, Boynton GM, Heeger DJ (1998) Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci 18:6939–6951

    CAS  PubMed  Google Scholar 

  • DeMyer WE (1987) Holoprosencephaly (cyclopia-arhinencephaly). Handb Clin Neurol 50:225–244

    Google Scholar 

  • DeMyer WE, Zeman W (1963) Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate: clinical, nosologic and electroencephalographic considerations. Confin Neurol 23:1–36

    CAS  PubMed  Google Scholar 

  • DeMyer WE, Zeman W, Palmer C (1964) The face predicts the brain: diagnostic significance of median anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–263

    CAS  PubMed  Google Scholar 

  • Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen RA, Rubinstein JLR (1999) Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 126:3831–3846

    CAS  PubMed  Google Scholar 

  • Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and ocytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27

    CAS  PubMed  Google Scholar 

  • Dodé C, Levilliers J, Dupont JM, de Paepe A, le Du N, Soussi-Yanicostas N et al (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465

    PubMed  Google Scholar 

  • Dodé C, Teixeira L, Levelliers J et al (2006) Kallmann syndrome: mutations in genes encoding prokineticin-2 and prokineticin receptor-2. PLOS Genet 2:e175

    PubMed Central  PubMed  Google Scholar 

  • Domené S, Roessler E, El-Jaick KB, Snir M, Brown JL, Vélez JI et al (2008) Mutations in the human SIX3 gene in holoprosencephaly are loss of function. Hum Mol Genet 17:3919–3928

    PubMed Central  PubMed  Google Scholar 

  • Dou CL, Li S, Lai E (1999) Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb Cortex 9:543–550

    CAS  PubMed  Google Scholar 

  • Dowling JE (1987) The retina: an approachable part of the brain. Belknap, Cambridge, MA

    Google Scholar 

  • Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) Magnetic resonance imaging of brain iron. Am J Neuroradiol 7:373–380

    Google Scholar 

  • Droogleever Fortuyn AB (1912) Die Ontogenie der Kerne des Zwischenhirns beim Kaninchen. Arch Anat Physiol Anat Abt 36:303–352

    Google Scholar 

  • Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisén J et al (2003) Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 391:453–465

    Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    CAS  PubMed  Google Scholar 

  • Eagleson GW, Jenks BL, van Overbeeke AP (1986) The pituitary adrenocorticotropes originates from neural ridge tissue in Xenopus laevis. J Embryol Exp Morphol 95:1–14

    CAS  PubMed  Google Scholar 

  • Earle KL, Mitrofanis J (1996) Genesis and fate of the perireticular thalamic nucleus during early development. J Comp Neurol 367:246–263

    CAS  PubMed  Google Scholar 

  • Edison R, Muenke M (2003) The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Congenit Anom (Kyoto) 43:1–21

    CAS  Google Scholar 

  • Eisenstat DD, Liu JK, Mione M, Zhong W, Yu G, Anderson SA et al (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217–237

    CAS  PubMed  Google Scholar 

  • El-Jaick KB, Powers SE, Bartholin L, Myers KR, Hahn J, Orioli IM et al (2007) Functional analysis of mutations in TGIF associated with holoprosencephaly. Mol Genet Metab 90:97–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison-Wright Z, Heyman I, Frampton I, Rubia K, Chitnis X, Ellison-Wright I et al (2004) Heterozygous PAX6 mutation, adult brain structure and fronto-striato-thalamic function in a human family. Eur J Neurosci 19:1505–1512

    PubMed  Google Scholar 

  • England SJ, Blanchard GB, Mahadevan L, Adams RJ (2006) A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133:4613–4617

    CAS  PubMed  Google Scholar 

  • Favor J, Sandulache R, Neuhäuser-Klaus A, Pretsch W, Chatterjee B, Senft E et al (1996) The mouse Pax2 1Neu mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93:13870–13875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fazzi E, Signonni SG, Scelsa B, Bova SM, Lanzi G (2003) Leber’s congenital amaurosis: an update. Eur J Pediatr Neurol 7:13–22

    Google Scholar 

  • Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI et al (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185

    CAS  PubMed  Google Scholar 

  • Fentress JC, Stanfield BB, Cowan WM (1981) Observations on the development of the striatum in mice and rats. Anat Embryol (Berl) 163:275–298

    CAS  Google Scholar 

  • Fernández-Alvarez E, Aicardi J (2001) Movement disorders in children. Mac Keith, London

    Google Scholar 

  • Ferreyra HA, Heckenlively JR (2012) Retinitis pigmentosa. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 381–392

    Google Scholar 

  • Fertuzinhos S, Krsnik Z, Imamura Kawasawa Y, Rašin M-R, Kwan KY, Chen J-G et al (2009) Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. J Neurosci 19:2196–2207

    Google Scholar 

  • Field GD, Chichilnisky EJ (2007) Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 30:1–30

    CAS  PubMed  Google Scholar 

  • Flames N, Pla R, Gelman DM, Rubinstein JLR, Puelles L, Marín O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27:9682–9695

    CAS  PubMed  Google Scholar 

  • Flandin P, Kimura S, Rubinstein JLR (2010) The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 30:2812–2823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florell SR, Townsend JJ, Klatt EC, Pysher TJ, Coffin CM, Wittwer CT, Viskochil DH (1996) Aprosencephaly and cerebellar dysgenesis in sibs. Am J Med Genet 63:542–548

    CAS  PubMed  Google Scholar 

  • Franco B, Guiolo S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R et al (1991) A gene deleted in Kallmannn’s syndrome shares homology with neural cell adhesion and axonal pathfinding molecules. Nature 353:529–536

    CAS  PubMed  Google Scholar 

  • Franz T (1994) Extra-toes (Xt) homozygous mutant mice demonstrate a role for the Gli-3 gene in the development of the forebrain. Acta Anat (Basel) 150:38–44

    CAS  Google Scholar 

  • Freeman TB, Spence MS, Boss BD, Spector DH, Strecker RE, Ola CW, Kordower JH (1991) Development of dopaminergic neurons in the human substantia nigra. Exp Neurol 113:344–353

    CAS  PubMed  Google Scholar 

  • Friede R (1989) Developmental neuropathology, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Fuhrmann S, Chow L, Reh TA (2000) Molecular control of cell diversification in the vertebrate retina. In: Fini ME (ed) Vertebrate eye development. Springer, Berlin/Heidelberg/New York, pp 69–91

    Google Scholar 

  • Furuta Y, Piston DW, Hogan BLM (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212

    CAS  PubMed  Google Scholar 

  • Gabreëls BATF (1998) Vasopressin secretion disorders in diabetes insipidus, Prader-Willi syndrome and Wolfram syndrome. University of Amsterdam, Thesis

    Google Scholar 

  • Gabreëls BATF, Swaab DF, Seidah NG, van Duijnhoven HLP, Martens GJM, van Leeuwen FW (1994) Differential expression of the neuroendocrine polypeptide 7B2 in hypothalami of Prader-(Labhart)-Willi syndrome patients. Brain Res 657:281–293

    PubMed  Google Scholar 

  • Gabreëls BATF, Swaab DF, de Kleijn DPV, Seidah NG, van de Loo J-W, van de Ven WJM et al (1998) Attenuation of the polypeptide 7B2, prohormone convertase PC2 and vasopressin in the hypothalamus of some Prader-Willi patients: Indications for a processing defect. J Clin Endocrinol Metab 83:591–599

    PubMed  Google Scholar 

  • Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651

    CAS  PubMed  Google Scholar 

  • Garcia CA, Duncan C (1977) Atelencephalic microcephaly. Dev Med Child Neurol 19:227–232

    CAS  PubMed  Google Scholar 

  • García-López M, Abellán A, Legaz I, Rubinstein JLR, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expressio patterns during development. J Comp Neurol 506:46–74

    PubMed  Google Scholar 

  • Garel S, Yun K, Grosschedl R, Rubinstein JLR (2002) The early topography of thalamocortical projections shifted in Ebf1 and Dlx1/2 mutant mice. Development 129:5621–5634

    CAS  PubMed  Google Scholar 

  • Gastaut H, Lammers HJ (1961) Anatomie du rhinencéphale. Masson, Paris

    Google Scholar 

  • Gelman DM, Martini FJ, Nóbrega-Pereira S, Pierani A, Kessaris M, Marín O (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29:9380–9389

    CAS  PubMed  Google Scholar 

  • Geoffroy Saint-Hilaire I (1832–1837) Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux (Traité de Tératologie). Baillière, Paris

    Google Scholar 

  • Gérard M, Abitbol M, Delezoide A-L, Dufier J-L, Mallet J, Vekemans M (1995) PAX-genes expression during human embryonic development, a preliminary report. C R Acad Sci Paris 318:57–66

    PubMed  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 12, Integrated systems of the CNS, part III. Elsevier, Amsterdam, pp 371–468

    Google Scholar 

  • Ghosh A, Shatz CJ (1992) Pathfinding and target selection by developing geniculocortical axons. J Neurosci 12:39–55

    CAS  PubMed  Google Scholar 

  • Gilbert M (1935) The early development of the human diencephalon. J Comp Neurol 62:81–115

    Google Scholar 

  • Glaser T, Cai J, Epstein J, Walton DS, Jepeal L, Maas RL (1995) PAX6 mutations in aniridia. In: Wiggs JR (ed) Molecular genetics of eye diseases. Wiley, New York, pp 51–82

    Google Scholar 

  • Golden JA (1998) Holoprosencephaly: a defect in brain patterning. J Neuropathol Exp Neurol 57:991–999

    CAS  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) An intricately patterned prefrontocaudate projection in the rhesus monkey. J Comp Neurol 171:369–386

    Google Scholar 

  • Goldman-Rakic PS (1981) Prenatal formation of cortical input and development of cytoarchitectonic compartments in the neostriatum of the rhesus monkey. J Neurosci 1:721–735

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into island and matrix cellular compartments. J Comp Neurol 205:398–413

    CAS  PubMed  Google Scholar 

  • González G, Puelles L, Medina L (2002) Organization of the mouse dorsal thalamus based on topology, calretinin immunostaining, and gene expression. Brain Res Bull 57:439–442

    PubMed  Google Scholar 

  • Goodman SI, Frerman FE (2001) Organic acidemia due to defects in lysine oxidation: 2-Ketoadipic acidemia and glutaric acidemia. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2195–2206

    Google Scholar 

  • Goodman SI, Norenberg MD, Shikes RH, Breslick DJ, Moe PG (1977) Glutaric aciduria: biochemical and morphological considerations. J Pediatr 90:746–750

    CAS  PubMed  Google Scholar 

  • Goodman SI, Stein DE, Schlesinger S, Christensen E, Schwartz M, Greenberg CR, Elpeleg ON (1998) Glutaryl-CoA dehydrogenase mutations in glutaric acidemia (type 1): review and report of thirty novel mutations. Hum Mutat 12:141–144

    CAS  PubMed  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    CAS  PubMed  Google Scholar 

  • Graw J (2000) Mouse mutants for eye development. In: Fini ME (ed) Vertebrate eye development. Springer, Berlin/Heidelberg/New York, pp 219–256

    Google Scholar 

  • Graw J (2003) The genetic and molecular basis of congenital eye defects. Nat Rev Genet 4:876–888

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1986) Neuropeptides in the basal ganglia. In: Martin JD, Barchas JD (eds) Neuropeptides in neurologic and psychiatric disease. Raven, New York, pp 135–161

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343–347

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Pickel VM, Joh TH, Reis DJ, Ragsdale CW Jr (1981) Direct demonstration of correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum. Proc Natl Acad Sci U S A 78:5871–5875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graziadei PP, Monti-Graziadei AG (1992) The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis. Neuroscience 46:617–629

    CAS  PubMed  Google Scholar 

  • Greig DM (1926) Oxycephaly. Edinburgh Med J 33:189–218

    Google Scholar 

  • Gribnau AAM, Geysberts LGM (1981) Developmental stages in the rhesus monkey (Macaca mulatta). Adv Anat Embryol Cell Biol 68:1–84

    CAS  PubMed  Google Scholar 

  • Gribnau AAM, Geysberts LGM (1985) Morphogenesis of the brain in staged rhesus monkey embryos. Adv Anat Embryol Cell Biol 91:1–69

    CAS  PubMed  Google Scholar 

  • Grindley JC, Davidson DR, Hill RE (1995) The role of Pax-6 in eye and nasal development. Development 121:1433–1442

    CAS  PubMed  Google Scholar 

  • Grindley JC, Hargett LK, Hill RE, Ross A, Hogan BL (1997) Disruption of PAX6 function in mice homozygous for the Pax6/Sey-1/Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech Dev 64:111–126

    CAS  PubMed  Google Scholar 

  • Gripp KW, Edwards MC, Mowat D, Meinecke P, Richieri-Costa A, Zackai EH et al (1998) Mutations in the transcription factor TGIF in holoprosencephaly. Am J Hum Genet 63:A32

    Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325

    CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    CAS  PubMed  Google Scholar 

  • Guillery RW, Okoro AN, Witkop CJ (1975) Abnormal visual pathways in the brain of the human albino. Brain Res 96:373–377

    CAS  PubMed  Google Scholar 

  • Gulisano M, Broccoli V, Pardini C, Boncinelli E (1996) Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur J Neurosci 8:1037–1050

    CAS  PubMed  Google Scholar 

  • Gulyas B, Ottoson D, Roland PE (1993) Functional organization of the human visual cortex. Pergamon, Oxford

    Google Scholar 

  • Haber SN, Gdowski MJ (2004) The basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 676–738

    Google Scholar 

  • Hahn JS, Barnes PD (2010) Neuroimaging advances in holoprosencephaly: refining the spectrum of the midline malformation. Am J Med Genet C Semin Med Genet 154C:120–132

    PubMed  Google Scholar 

  • Hahn JS, Barnes PD, Clegg NJ, Stashinko EE (2010) Septopreoptic holoprosencephaly: a mild subtype associated with midline craniofacial anomalies. AJNR Am J Neuroradiol 31:1596–1601

    CAS  PubMed  Google Scholar 

  • Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10:325–362

    CAS  PubMed  Google Scholar 

  • Hamilton WJ, Mossman HW (1972) Hamilton, Boyd and Mossman’s human embryology, 4th edn. Heffer, Cambridge

    Google Scholar 

  • Hanaway J, McConnell JA, Netsky MG (1971) Histogenesis of the substantia nigra, ventral tegmental area of Tsai and interpeduncular nucleus: an autoradiographic study of the mesencephalon in the rat. J Comp Neurol 142:59–74

    CAS  PubMed  Google Scholar 

  • Hardelin J-P (2001) Kallmann syndrome: towards molecular pathogenesis. Mol Cell Endocrinol 179:75–81

    CAS  PubMed  Google Scholar 

  • Hardelin J-P, Dodé C (2008) KAL1, FGFR1, PROKR2, PORK2 and Kallmann syndrome. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development, 2nd edn. Oxford University Press, Oxford, pp 482–490

    Google Scholar 

  • Hardelin J-P, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M et al (1999) Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 215:26–44

    CAS  PubMed  Google Scholar 

  • Harris RM, Hendrickson AE (1978) Local circuit neurons in the rat ventrobasal complex – a GABA immunocytochemical study. Neuroscience 21:229–236

    Google Scholar 

  • Harris CP, Townsend JJ, Norman MG, White VA, Viskochil DH, Pysher TJ, Klatt EC (1994) Atelencephalic aprosencephaly. J Child Neurol 9:412–416

    CAS  PubMed  Google Scholar 

  • Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KHL, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    CAS  PubMed  Google Scholar 

  • Hébert JM, Mishina Y, McConnell SK (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35:1029

    PubMed  Google Scholar 

  • Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003) FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130:1101–1111

    PubMed  Google Scholar 

  • Heimer L (1976) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms: the continuing evolution of the limbic system concept. Plenum, New York, pp 95–187

    Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235

    CAS  PubMed  Google Scholar 

  • Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Záborsky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    CAS  PubMed  Google Scholar 

  • Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006

    CAS  PubMed  Google Scholar 

  • Hellström A, Aronsson M, Axelson C, Kyllerman M, Kopp S, Steffenberg S et al (2000) Children with septo-optic dysplasia – how to improve and sharpen the diagnosis. Horm Res 53(Suppl 1):19–25

    PubMed  Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–545

    Google Scholar 

  • Hertwig P (1942) Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z Indukt Abstammungs-Vererbungsl 80:220–246

    Google Scholar 

  • Hevner RF (2000) Development of connections in the human visual system during fetal midgestation: a DiI-tracing study. J Neuropathol Exp Neurol 59:385–392

    CAS  PubMed  Google Scholar 

  • Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S et al (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366

    CAS  PubMed  Google Scholar 

  • Hevner RF, Miyashita E, Rubinstein JLR (2002) Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J Comp Neurol 447:8–17

    PubMed  Google Scholar 

  • Hewitt W (1958) The development of the human caudate and amygdaloid nucleus. J Anat (Lond) 92:377–382

    CAS  Google Scholar 

  • Hewitt W (1961) The development of the human internal capsule and lenticular nucleus. J Anat (Lond) 55:191–199

    Google Scholar 

  • Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–603

    CAS  PubMed  Google Scholar 

  • Hill RE, Favor J, Hogan BLM, Ton CCT, Saunders GF, Hanson IM et al (1991) Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525

    CAS  PubMed  Google Scholar 

  • Hinds JW (1968a) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134:287–304

    CAS  PubMed  Google Scholar 

  • Hinds JW (1968b) Autoradiographic study of the histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134:305–322

    CAS  PubMed  Google Scholar 

  • Hinrichsen KV (1990) Augenentwicklung. In: Hinrichsen KV (ed) Humanembryologie. Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Springer, Berlin/Heidelberg/New York, pp 477–500

    Google Scholar 

  • Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34

    CAS  PubMed  Google Scholar 

  • Hirsch N, Grainger RM (2000) Induction of the lens. In: Fini ME (ed) Vertebrate eye development. Springer, Berlin/Heidelberg/New York, pp 51–68

    Google Scholar 

  • His W (1889) Die Formentwickelung des menschlichen Vorderhirns vom Ende des ersten bis zum Beginn des dritten Monats. Abh Kön Sächs Ges Wiss Math Phys Kl 15:675–735

    Google Scholar 

  • His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 17:172–179

    Google Scholar 

  • Hitchcock PF, Hickey TL (1980) Prenatal development of the human lateral geniculate nucleus. J Comp Neurol 194:395–411

    CAS  PubMed  Google Scholar 

  • Ho VB, Chuang HS, Rovira MJ, Koo B (1995) Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 16:1405–1412

    CAS  PubMed  Google Scholar 

  • Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. I. Teil, Deuticke

    Google Scholar 

  • Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M, de Klerck JBC, Lehnert W et al (1996) Clinical course, early diagnosis, treatment and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27:115–123

    CAS  PubMed  Google Scholar 

  • Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF (1986) Small eye (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Neurol 97:95–110

    CAS  Google Scholar 

  • Hogan BL, Hirst EM, Horsburgh G, Hetherington CM (1988) Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103:115–119

    PubMed  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    CAS  PubMed  Google Scholar 

  • Holzschuh J, Hauptmann G, Driever W (2003) Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 23:5507–5519

    CAS  PubMed  Google Scholar 

  • Hongo T, Hakuba A, Shiota K, Naruse I (2000) Suckling dysfunction caused by defects in the olfactory system in genetic arhinencephalic mice. Biol Neonate 78:293–299

    CAS  PubMed  Google Scholar 

  • Hoon AH Jr, Belcito KM, Nagae-Poetscher LM (2003) Neuroimaging in spasticity and movement disorders. J Child Neurol 18:S25–S39

    PubMed  Google Scholar 

  • Hori A (1983) A brain with two hypophyses in median cleft face syndrome. Acta Neuropathol (Berl) 59:150–154

    CAS  Google Scholar 

  • Hori A, Schmidt D, Feyerabend B (1995) Pharyngosellar pituitary: a rare developmental anomaly of the pituitary gland. Acta Neuropathol (Berl) 89:459–463

    CAS  Google Scholar 

  • Hori A, Schmidt D, Rickels E (1999a) Pharyngeal pituitary: development, malformation, and tumorigenesis. Acta Neuropathol (Berl) 98:262–272

    CAS  Google Scholar 

  • Hori A, Schmidt D, Kuebber S (1999b) Immunohistochemical survey of migration of human anterior pituitary cells in developmental, pathological, and clinical aspects: a review. Micr Res Technol 46:59–68

    CAS  Google Scholar 

  • Horsford DJ, Hanson I, Freund C, McInnes RR, van Heyningen V (2001) Transcription factors in eye disease and ocular development. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York, pp 5987–6032

    Google Scholar 

  • Houart C, Westerfield M, Wilson SW (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391:788–792

    CAS  PubMed  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C-P, Take-Uchi M, Wilson SW (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35:255–265

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B 278:377–409

    CAS  Google Scholar 

  • Humphrey T (1940) The development of the olfactory and the accessory olfactory formations in human embryos and fetuses. J Comp Neurol 73:431–468

    Google Scholar 

  • Humphrey T (1967) The development of the human tuberculum olfactorium during the first three months of life. J Hirnforsch 9:437–469

    CAS  PubMed  Google Scholar 

  • Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol 132:135–166

    CAS  PubMed  Google Scholar 

  • Humphrey T (1972) The development of the amygdaloid complex. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 21–77

    Google Scholar 

  • Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurol 9:26–36

    CAS  Google Scholar 

  • Ikeda H, Niizuma H, Suzuki J, Takabayashi T, Ozawa N (1987) A case of cebocephaly-holoprosencephaly with aberrant adenohypophysis. Childs Nerv Syst 3:251–254

    CAS  PubMed  Google Scholar 

  • Ikeda H, Suzuki J, Sasano N, Niizumi H (1988) The development of morphogenesis of the human pituitary gland. Anat Embryol (Berl) 178:327–336

    CAS  Google Scholar 

  • Ippel PF, Breslau-Siderius EJ, Hack WWM, van der Blij HF, Bouve S, Bijlsma JB (1998) Atelencephalic microcephaly: a case report and review of the literature. Eur J Pediatr 157:493–497

    CAS  PubMed  Google Scholar 

  • Ito M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 87:725–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh K, Suzuki K, Bise K, Itoh H, Mehraein P, Weis S (2001) Apoptosis in the basal ganglia of the developing human nervous system. Acta Neuropathol (Berl) 101:92–100

    CAS  Google Scholar 

  • Izumi Y, Tatsumi K, Okamoto S, Hosokawa A, Ueno S, Fukui H, Amino N (1999) A novel mutation of the KAL1 gene in Kallmann syndrome. Endocrinol J 46:651–658

    CAS  Google Scholar 

  • Izumi Y, Tatsumi K, Okamoto S, Ogawa T, Hosokawa A, Matsuo T et al (2001) Analysis of the KAL1 gene in 19 Japanese patients with Kallmann syndrome. Endocrinol J 48:143–149

    CAS  Google Scholar 

  • Jansonius NM, van der Vliet AM, Cornelissen FW, Pott JWR, Kooijman AC (2001) A girl without a chiasm: electrophysiologic and MRI evidence for the absence of crossing optic nerve fibers in a girl with a congenital nystagmus. J Neuroophthalmol 21:26–29

    CAS  PubMed  Google Scholar 

  • Johnston MV, Hoon AH (2000) Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J Child Neurol 15:588–591

    CAS  PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  • Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z (2002) Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–5052

    CAS  PubMed  Google Scholar 

  • Juranek J, Filipek PA, Berenji GR, Modahl C, Osana K, Spence MA (2006) Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. J Child Neurol 21:1051–1058

    PubMed  Google Scholar 

  • Kahle W (1969) Die Entwicklung der menschlichen Groβhirnhemisphäre. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kakita A, Wakabayashi K, Sekizuka N, Takahashi H (1997) Cyclopia: histogenesis of the single optic nerve. Acta Neuropathol (Berl) 94:509–513

    CAS  Google Scholar 

  • Kakita A, Hayashi S, Arakawa M, Takahashi H (2001) Aprosencephaly: histopathological features of the rudimentary forebrain and retina. Acta Neuropathol (Berl) 102:110–116

    CAS  Google Scholar 

  • Kallmann FJ, Schoenfeld WA, Barrera SE (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236

    Google Scholar 

  • Kalsbeek A, Voorn P, Buys RM, Pool CW, Uylings HBM (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    CAS  PubMed  Google Scholar 

  • Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 15:266–268

    CAS  PubMed  Google Scholar 

  • Kaplan E (2004) The M, P, and K pathways of the primate visual system. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, MA, pp 481–493

    Google Scholar 

  • Karstensen HG, Tommerup N (2012) Isolated and syndromic forms of congenital anosmis. Clin Genet 81:210–215

    CAS  PubMed  Google Scholar 

  • Kato M, Dobyns WB (2005) X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, ‘interneuronopathy’. J Child Neurol 20:392–397

    PubMed  Google Scholar 

  • Kawano H, Fukuda T, Kubo K, Horie M, Uyemura K, Takeuchi K et al (1999) Pax-6 is required for thalamocortical pathway formation in fetal rats. J Comp Neurol 408:147–160

    CAS  PubMed  Google Scholar 

  • Kelley RI, Roessler E, Hennekam RCM, Feldman GL, Kosaki K, Jones MC et al (1996) Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 66:478–484

    CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93:525–546

    CAS  PubMed  Google Scholar 

  • Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187

    CAS  PubMed  Google Scholar 

  • Kerryson JB, Newman NJ (2007) Genetic causes of blindness. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, pp 274–284

    Google Scholar 

  • Keyser AJM (1972) The development of the diencephalon of the Chinese hamster. Acta Anat (Basel) 83(Suppl 59):1–178

    Google Scholar 

  • Keyser AJM (1979) Development of the hypothalamus in mammals. An investigation into its morphological position during ontogenesis. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, ol 1: anatomy of the hypothalamus. Dekker, New York, pp 65–136

    Google Scholar 

  • Khan AA, Wadhwa S, Pandey RM, Bijlani V (1993) Prenatal human lateral geniculate nucleus: a quantitative light microscopic study. Dev Neurosci 15:403–409

    CAS  PubMed  Google Scholar 

  • Khan AA, Wadhwa S, Bijlani V (1994) Development of the human lateral geniculate nucleus: an electron microscopic study. Int J Dev Neurosci 7:661–672

    Google Scholar 

  • Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367

    CAS  PubMed  Google Scholar 

  • Kim TS, Cho S, Dickson DW (1990) Aprosencephaly: review of the literature and report of a case with cerebellar hypoplasia, pigmented epithelial cyst and Rathke’s cleft cyst. Acta Neuropathol (Berl) 79:424–431

    CAS  Google Scholar 

  • Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH et al (2008) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 83:511–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura S, Hara M, Nezu A, Osaka H, Yamazaki S, Saitoh U (1994) Two cases of glutaric aciduria type 1: clinical and neuropathological findings. J Neurol Sci 123:38–43

    CAS  PubMed  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    CAS  PubMed  Google Scholar 

  • Kinney HC, Armstrong DD (1997) Perinatal neuropathology. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 536–599

    Google Scholar 

  • Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T et al (2002) Identification of a Wnt/Dvl/beta-Catenin – Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685

    CAS  PubMed  Google Scholar 

  • Kishi K (1987) Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J Comp Neurol 258:112–124

    CAS  PubMed  Google Scholar 

  • Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, Suzuki R et al (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 126:5749–5758

    CAS  PubMed  Google Scholar 

  • Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M et al (2002) Mutation of ARX cause abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369

    CAS  PubMed  Google Scholar 

  • Kjaer I, Fischer-Hansen B (1995) Human fetal pituitary gland in holoprosencephaly and anencephaly. J Craniofac Genet Dev Biol 15:222–229

    CAS  PubMed  Google Scholar 

  • Kjaer I, Fischer-Hansen B (1996) The human vomeronasal organ: prenatal developmental stage, and distribution of luteinizing hormone-releasing hormone. Eur J Oral Sci 104:34–40

    CAS  PubMed  Google Scholar 

  • Koenekoop RK, Cremers FPM, Lopez I, den Hollander AI (2012) Leber congenital amaurosis: clinical, genetic and therapeutic perspectives. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 491–503

    Google Scholar 

  • Kölker S, Hoffmann GF, Schor DSM, Feyh P, Wagner L, Jeffrey I et al (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in postmortem brain predicts vulnerability of the putamen. Neuropediatrics 34:253–260

    PubMed  Google Scholar 

  • Kondoh H (1999) Transcription factors for lens development assessed in vivo. Curr Opin Genet Dev 9:301–318

    CAS  PubMed  Google Scholar 

  • Kordower JH, Piecinski P, Rakic P (1992) Neurogenesis of the amygdaloid nuclear complex in the rhesus monkey. Brain Res Dev Brain Res 68:9–15

    CAS  PubMed  Google Scholar 

  • Korff CM, Apkarian P, Bour LJ, Meuli R, Verrey J-D, Roulet-Perez E (2003) Isolated absence of optic chiasm revealed by congenital nystagmus, MRI and VEPs. Neuropediatrics 34:219–223

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98:4752–4757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostović I (1986) Prenatal development of the nucleus basalis complex and related fiber systems in man: a histochemical study. Neuroscience 17:1047–1077

    PubMed  Google Scholar 

  • Kostović I (1990) Zentralnervensystem. In: Hinrichsen KV (ed) Humanembryologie. Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Springer, Berlin/Heidelberg/New York, pp 381–448

    Google Scholar 

  • Kostović I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    PubMed  Google Scholar 

  • Kouki T, Imai H, Aoto K, Eto K, Shioda S, Kawamura K, Kikuyama S (2001) Developmental origin of the rat adenohypophysis prior to the formation of Rathke’s pouch. Development 128:959–963

    CAS  PubMed  Google Scholar 

  • Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organization of human hypothalamus in fetal development. J Comp Neurol 446:301–324

    PubMed  Google Scholar 

  • Krägeloh-Mann I, Petersen D, Hagberg G, Vollmer B, Hagberg B, Michaelis R (1995) Bilateral spastic cerebral palsy – MRI pathology and origin. Analysis from a representative series of 56 cases. Dev Med Child Neurol 38:379–397

    Google Scholar 

  • Krägeloh-Mann I, Helber A, Mader I, Staudt M, Wolff M, Groenendaal F, de Vries L (2002) Bilateral lesions of thalamus and basal ganglia: origin and outcome. Dev Med Child Neurol 44:477–484

    PubMed  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1954) The human diencephalon. A summary of development, structure, function and pathology. Confin Neurol 14(Suppl):1–230

    CAS  PubMed  Google Scholar 

  • Kundrat H (1882) Arhinencephalie als typische Art von Missbildung. Von Leuschner und Lubensky, Graz

    Google Scholar 

  • Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209

    PubMed  Google Scholar 

  • Künzle H (1977) Projections from the primary somatosensory cortex to the basal ganglia and thalamus in the monkey. Exp Brain Res 30:481–492

    PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Kyllerman M, Steen G (1980) Glutaric aciduria: a “common” metabolic disorder? Arch Fr Pediatr 37:279

    CAS  PubMed  Google Scholar 

  • LaMantia AS, Bhasin N, Rhodes K, Heemskerk J (2000) Mesenchymal-epithelial induction mediates olfactory pathway formation. Neuron 28:411–425

    CAS  PubMed  Google Scholar 

  • Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144

    Google Scholar 

  • Larroche JC (1981) Agenesis of the pituitary gland. Handb Clin Neurol 42:11

    Google Scholar 

  • Larsen CW, Zeltser LM, Lumsden A (2001) Boundary formation and compartition in the avian diencephalon. J Neurosci 21:4699–4711

    CAS  PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Lazzaro D, Price M, De Felice M, Di Lauro R (1991) The transcription factor TTF1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    CAS  PubMed  Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    CAS  PubMed  Google Scholar 

  • Leech RW, Shuman RM (1986) Holoprosencephaly and related midline cerebral anomalies: a review. J Child Neurol 1:3–18

    CAS  PubMed  Google Scholar 

  • Legouis R, Hardelin J-P, Levilliers J, Claverie J-M, Compain S, Wunderle V et al (1991) The candidate gene for X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435

    CAS  PubMed  Google Scholar 

  • Leibel RL, Shih VE, Goodman SI, Bauman ML, McCabe ERB, Zwerdling RG, Bergman I, Costello C (1980) Glutaric acidemia: a metabolic disorder causing progressive choreoathetosis. Neurology 30:1163–1168

    CAS  PubMed  Google Scholar 

  • Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatr 14:216–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown

    Google Scholar 

  • Letinić K, Kostović I (1996) Transient patterns of calbindin-D28K expression in the developing striatum of man. Neurosci Lett 220:211–214

    PubMed  Google Scholar 

  • Letinić K, Kostović I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384:373–395

    PubMed  Google Scholar 

  • Letinić K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 9:931–936

    Google Scholar 

  • Levitt P, Rakic P (1982) The time of genesis, embryonic origin and differentiation of the brainstem monoamine neurons in the rhesus monkey. Brain Res 4:35–57

    Google Scholar 

  • Lewis AJ, Simon EM, Barkovich AJ, Clegg NJ, Delgado MR, Levey E, Hahn JS (2002) Middle interhemispheric variant of holoprosencephaly. A distinct cliniconeuroradiologic subtype. Neurology 59:1860–1865

    CAS  PubMed  Google Scholar 

  • Li H, Tierney C, Wen L, Wu JY, Rao Y (1997) A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124:603–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK et al (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254

    CAS  PubMed  Google Scholar 

  • Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F et al (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morhogenesis. Nature 401:279–282

    CAS  PubMed  Google Scholar 

  • Litingtung Y, Chiang C (2000) Control of Shh activity and signaling in the neural tube. Dev Dyn 219:143–154

    CAS  PubMed  Google Scholar 

  • Liu JK, Ghattas I, Liu S, Chen S, Rubinstein JLR (1997) Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn 210:498–512

    CAS  PubMed  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    CAS  PubMed  Google Scholar 

  • Lohman AJM, Lammers HJ (1967) On the structure and fibre connections of the olfactory system in mammals. Prog Brain Res 23:65–82

    CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    CAS  PubMed  Google Scholar 

  • Long JE, Garel S, Depew MJ, Tobet S, Rubinstein JLR (2003) DLX5 regulates development of peripheral and central components in the olfactory system. J Neurosci 23:568–578

    CAS  PubMed  Google Scholar 

  • Long JE, Swan C, Liang WS, Cobos I, Potter GB, Rubinstein JLR (2009a) Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways. J Comp Neurol 512:556–572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long JE, Cobos I, Potter GB, Rubinstein JLR (2009b) Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. Cereb Cortex 19(Suppl 1):i96–i106

    PubMed Central  PubMed  Google Scholar 

  • López-Bendito G, Molnár Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289

    PubMed  Google Scholar 

  • López-Mascaraque L, de Carlos JA, Valverde F (1996) Early onset of the rat olfactory bulb projections. Neuroscience 70:255–266

    PubMed  Google Scholar 

  • Louis ED, Lynch T, Cargan AL, Fahn S (1995) Generalized chorea in an infant with semilobar holoprosencephaly. Pediatr Neurol 13:355–357

    CAS  PubMed  Google Scholar 

  • Lund RD, Mustari MJ (1977) Development of the geniculocortical pathway in rats. J Comp Neurol 173:289–305

    CAS  PubMed  Google Scholar 

  • Lurie IW, Nedzved MK, Lazjuk GI, Kirillova IA, Cherstvoy ED (1979) Aprosencephaly-atelencephaly and the aprosencephaly (XK) syndrome. Am J Med Genet 3:303–309

    Google Scholar 

  • Lurie IW, Nedzved MK, Lazjuk GI, Kirillova IA, Cherstvoy ED, Ostrovskaja TI, Shved IA (1980) The XK-aprosencephaly syndrome. Am J Med Genet 7:231–234

    CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    CAS  PubMed  Google Scholar 

  • Macchi G (1951) The ontogenetic development of the olfactory telencephalon in man. J Comp Neurol 95:245–305

    CAS  PubMed  Google Scholar 

  • Macdonald R, Wilson SW (1996) Pax proteins and eye development. Curr Opin Neurobiol 6:49–56

    CAS  PubMed  Google Scholar 

  • Magoon EH, Robb RM (1981) Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophthalmol 99:655–670

    CAS  PubMed  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J et al (2008) Safety and efficacy of gene transfer to Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mai JK, Ashwell KWS (2004) Fetal development of the central nervous system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 49–94

    Google Scholar 

  • Malamud N (1950) Status marmoratus: a form of cerebral palsy following either birth injury or inflammation of the central nervous system. J Pediatr 37:610–619

    CAS  PubMed  Google Scholar 

  • Mall FP (1917) Cyclopia in the human embryo. Contrib Embryol Carnegie Instn 6:5–33

    Google Scholar 

  • Mallamacci A, Muzio L, Chan CH, Parnavelas J, Boncinelli E (2000) Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nat Neurosci 3:679–686

    Google Scholar 

  • Mann IC (1928) The development of the human eye. Cambridge University Press, London

    Google Scholar 

  • Marchand R, Lajoie L (1986) Histogenesis of the striatopallidal system in the rat. Neurogenesis of its neurons. Neuroscience 17:573–590

    CAS  PubMed  Google Scholar 

  • Marchand R, Poirier LJ (1983) Isthmic origin of neurons of the rat substantia nigra. Neuroscience 9:373–381

    CAS  PubMed  Google Scholar 

  • Marchand R, Lajoie L, Blanchet C (1986) Histogenesis at the level of the basal forebrain: the entopeduncular nucleus. Neuroscience 17:591–607

    CAS  PubMed  Google Scholar 

  • Marcorelles P, Laquerrière A (2010) Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet 154C:109–119

    PubMed  Google Scholar 

  • Marín O (2003) Thalamocortical topography reloaded: it’s not where you go, but how you get there. Neuron 39:388–391

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2002) Patterning, regionalization, and cell differentiation in the forebrain. In: Rossant J, Tam PPL (eds) Mouse development – patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 75–106

    Google Scholar 

  • Marín O, Anderson SA, Rubinstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  Google Scholar 

  • Marlow F, Zwartkruis F, Malicki J, Neuhaus SC, Abbas L, Weaver M et al (1998) Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev Biol 203:382–399

    CAS  PubMed  Google Scholar 

  • Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25:32–38

    CAS  PubMed  Google Scholar 

  • Marsh E, Fulp C, Gomex E, Nasrallah I, Minarszik J, Sudi J et al (2009) Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 132:1563–1576

    PubMed Central  PubMed  Google Scholar 

  • Martin D, Camper SA (2001) Genetic regulation of forebrain and pituitary development. In: Rappaport R, Anselem S (eds) Hypothalamic-pituitary development. Genetic and clinical aspects. Karger, Basel, pp 1–12

    Google Scholar 

  • Martínez S, Puelles L (2000) Neurogenetic compartments of the mouse diencephalon and some characteristic gene expression patterns. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Berlin/Heidelberg/New York, pp 91–104

    Google Scholar 

  • Martinez-Barbera JP, Rodriguez TA, Beddington RS (2000) The homeobox gene Hesx1 is required in the anterior neural ectoderm for normal forebrain formation. Dev Biol 223:422–430

    CAS  PubMed  Google Scholar 

  • Mastick GS, Davis NM, Andrew GL, Easter SS Jr (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124:1985–1997

    CAS  PubMed  Google Scholar 

  • Mathieu J, Barth A, Rosa FM, Wilson SW, Peyriéras N (2002) Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development 129:3055–3065

    CAS  PubMed  Google Scholar 

  • Matise MP, Joyner AL (1999) Gli genes in development and cancer. Oncogene 18:7852–7859

    CAS  PubMed  Google Scholar 

  • Matsunaga E, Shiota K (1977) Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratologia 16:261–272

    CAS  Google Scholar 

  • Mazzitelli N, Vauthay L, Grandi C, Fuksman R, Rittler M (2002) Reviewing old concepts at the scent of a new millennium: growth restriction, adrenal hypoplasia, and thymomegaly in human anencephaly. Teratology 66:105–114

    CAS  PubMed  Google Scholar 

  • McAllister JP, Das GD (1977) Neurogenesis in the epithalamus, dorsal thalamus and ventral thalamus of the rat: an autoradiographic and cytological study. J Comp Neurol 172:647–686

    PubMed  Google Scholar 

  • McConnell J, Angevine JB Jr (1983) Time of origin in the amygdaloid complex of the mouse. Brain Res 272:150–156

    CAS  PubMed  Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    CAS  PubMed  Google Scholar 

  • Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 173–220

    Google Scholar 

  • Meisami E, Bhatnagar KP (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43:476–499

    CAS  PubMed  Google Scholar 

  • Meredith M (2001) Human vomeronasal organ function: a critical review of best and worse cases. Chem Senses 26:433–445

    CAS  PubMed  Google Scholar 

  • Merigan WH (1989) Chromatic and achromatic vision of macaques: role of the P pathway. J Neurosci 9:776–783

    CAS  PubMed  Google Scholar 

  • Merigan WH, Katz LM, Maunsell JH (1991a) The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci 11:994–1001

    CAS  PubMed  Google Scholar 

  • Merigan WH, Byrne CE, Maunsell JH (1991b) Does primate motion perception depend on the magnocellular pathway? J Neurosci 11:3422–3429

    CAS  PubMed  Google Scholar 

  • Métin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 16:3219–3235

    PubMed  Google Scholar 

  • Meyers EN, Lewandowski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    CAS  PubMed  Google Scholar 

  • Miller SP, Shevell MI, Patenaude Y, Poulin C, O’Gorman AM (2000) Septo-optic dysplasia plus: a spectrum of malformations of cortical development. Neurology 54:1701–1703

    CAS  PubMed  Google Scholar 

  • Ming JE, Muenke M (1998) Holoprosencephaly: from Homer to hedgehog. Clin Genet 53:155–163

    CAS  PubMed  Google Scholar 

  • Ming JE, Muenke M (2002) Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 71:1017–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M et al (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301

    CAS  PubMed  Google Scholar 

  • Mione MC, Cavanagh JFR, Harris B, Parnavelas JG (1997) Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J Neurosci 17:2018–2029

    CAS  PubMed  Google Scholar 

  • Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    CAS  PubMed  Google Scholar 

  • Mitrofanis J (1992) Patterns of antigenic expression in the thalamic reticular nucleus of developing rats. J Comp Neurol 320:161–181

    CAS  PubMed  Google Scholar 

  • Mitrofanis J, Baker GE (1993) Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. J Comp Neurol 338:575–587

    CAS  PubMed  Google Scholar 

  • Miyai K, Azukizawa M, Kumahara Y (1971) Familial isolated thyrotrophin deficiency with cretinism. N Engl J Med 285:1043–1048

    CAS  PubMed  Google Scholar 

  • Miyashita-Lin EM, Hevner R, Wassarman KM, Martínez S, Martin GR, Rubinstein JLR (1999) Neocortical regionalization is preserved in the absence of thalamic innervation in newborn Gbx-2 mutant mice. Science 285:906–909

    CAS  PubMed  Google Scholar 

  • Miyoshi K, Matsuoka T, Mizushima S (1969) Familial holotopistic striatal necrosis. Acta Neuropathol (Berl) 13:240–249

    CAS  Google Scholar 

  • Mojsilović J, Zečević N (1991) Early development of the human thalamus: Golgi and Nissl study. Early Hum Dev 27:119–144

    PubMed  Google Scholar 

  • Molnár Z (1998) Development of thalamocortical connections. Springer/Landes, Berlin, Heidelberg, New York/Georgetown

    Google Scholar 

  • Molnár Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397

    PubMed  Google Scholar 

  • Molnár Z, Butler AB (2002) The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24:530–541

    PubMed  Google Scholar 

  • Molnár Z, Hannan AJ (2000) Development of thalamocortical projections in normal and mutant mice. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Berlin/Heidelberg/New York, pp 293–332

    Google Scholar 

  • Molnár Z, Adams R, Blakemore C (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745

    PubMed  Google Scholar 

  • Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ (2012) Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 35:1573–1585

    PubMed  Google Scholar 

  • Montero VM, Zempel J (1986) The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Exp Brain Res 62:215–223

    CAS  PubMed  Google Scholar 

  • Monuki ES, Walsh CA (2001) Mechanisms of cerebral cortical patterning in mice and human. Nat Neurosci 4:1199–1206

    CAS  PubMed  Google Scholar 

  • Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604

    CAS  PubMed  Google Scholar 

  • Moran DT, Jafek BW, Carter Rowley J (1991) The vomeronasal (Jacobson’s) organ in man: ultrastructure and frequency of occurrence. J Steroid Biochem Mol Biol 39:545–552

    CAS  PubMed  Google Scholar 

  • Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    CAS  PubMed  Google Scholar 

  • Mori T, Yuxing Z, Takaki H, Takeuchi M, Iseki K, Hagino S et al (2004) The LIM homeobox gene, L3/Lhx8, is necessary for proper development of basal forebrain cholinergic neurons. Eur J Neurosci 19:3129–3141

    PubMed  Google Scholar 

  • Morioka M, Marubayashi T, Matsumitsu T, Miura M, Ushio Y (1995) Basal encephaloceles with morning glory syndrome, and progressive hormonal and visual disturbances: a case report and review of the literature. Brain Dev 17:196–201

    CAS  PubMed  Google Scholar 

  • Morishima A, Aranoff GS (1986) Syndrome of septo-optic dysplasia: the clinical spectrum. Brain Dev 8:233–239

    CAS  PubMed  Google Scholar 

  • Muenke M, Beachy PA (2000) Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269

    CAS  PubMed  Google Scholar 

  • Muenke M, Beachy PA (2001) Holoprosencephaly. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 6203–6230

    Google Scholar 

  • Müller F, O’Rahilly R (1989a) The human brain at stage 16, including the initial development of the neurohypophysis. Anat Embryol (Berl) 179:551–569

    Google Scholar 

  • Müller F, O’Rahilly R (1989b) The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol (Berl) 180:353–369

    Google Scholar 

  • Müller F, O’Rahilly R (1989c) Mediobasal prosencephalic defects, including holoprosencephaly and cyclopia, in relation to the development of the human forebrain. Am J Anat 185:391–414

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (2004) Olfactory structures in staged human embryos. Cells Tissues Organs 178:93–116

    PubMed  Google Scholar 

  • Müller F, O’Rahilly R (2006) The amygdaloid complex and the medial and lateral ventricular eminences in staged human embryos. J Anat (Lond) 208:547–564

    Google Scholar 

  • Murray RC, Navi D, Fesenko J, Lander AD, Calof AL (2003) Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 23:1769–1780

    CAS  PubMed  Google Scholar 

  • Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230

    CAS  PubMed  Google Scholar 

  • Muzio L, DiBenedetto B, Stoykova A, Boncinelli E, Gruss P, Mallamaci A (2002) Conversion of cerebral cortex into basal ganglia in Emx2 −/− Pax6 Sey/Sey double-mutant mice. Nat Neurosci 5:737–745

    Google Scholar 

  • Nagai L, Li CH, Hsieh SM, Kizaki T, Urano Y (1984) Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol 105:318–323

    CAS  PubMed  Google Scholar 

  • Nagasaki H, Ito M, Yuasa H, Saito H, Fukase M, Hamada K et al (1995) Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus. J Clin Endocrinol Metab 80:1352–1356

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Shimogori T (2012) Diversity of thalamic progenitor cells and postmitotic neurons. Eur J Neurosci 35:1554–1562

    PubMed  Google Scholar 

  • Nakano KK (1973) Anencephaly: a review. Dev Med Child Neurol 15:383–400

    CAS  PubMed  Google Scholar 

  • Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, de Die-Smulders C et al (1999) The mutational spectrum of the Sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479–2488

    CAS  PubMed  Google Scholar 

  • Nanni L, Croen LA, Lammer EJ, Muenke M (2000) Holoprosencephaly: molecular study of a California population. Am J Med Genet 90:315–319

    CAS  PubMed  Google Scholar 

  • Naruse I, Keino H (1995) Apoptosis in the developing CNS. Prog Neurobiol 47:135–155

    CAS  PubMed  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical populations. Nat Neurosci 5:1279–1287

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1977) Aspects of the morphology of the striatum. In: Cools AR, Lohman AHM, van den Bercken JHL (eds) Psychobiology of the striatum. Elsevier/North-Holland, Amsterdam, pp 1–19

    Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    CAS  PubMed  Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40

    CAS  PubMed  Google Scholar 

  • Norman RM (1947) État marbré of the corpus striatum following birth injury. J Neurol Psychiatry 10:12–25

    CAS  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt PJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Nornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109:797–809

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Muske LE (1994) Multiple embryonic origins of gonadotropin-releasing hormone (GnRH) immunoreactive neurons. Brain Res Dev Brain Res 78:279–290

    CAS  PubMed  Google Scholar 

  • O’Rahilly R (1966) The early development of the eye in staged human embryos. Contrib Embryol Carnegie Instn 38:1–42

    Google Scholar 

  • O’Rahilly R, Müller F (2001) Human embryology & teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • O’Rahilly R, Müller F, Hutchins GM, Moore GW (1988) Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development. Am J Anat 182:295–317

    PubMed  Google Scholar 

  • Oelschläger HA, Buhl EH, Dann JF (1987) Development of the nervus terminalis in mammals including toothed whales and humans. Ann NY Acad Sci 519:447–464

    PubMed  Google Scholar 

  • Ogren MP, Rakic P (1981) The prenatal development of the pulvinar in the monkey: 3H-thymidine autoradiographic and morphometric analyses. Anat Embryol (Berl) 162:1–20

    CAS  Google Scholar 

  • Ohkubo Y, Chiang C, Rubinstein JLR (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111:1–17

    CAS  PubMed  Google Scholar 

  • Oliveira LM, Semimara SB, Beranova M, Hayes FJ, Valkenburgh SB, Schipani E et al (2001) The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuro-endocrine characteristics. J Clin Endocrinol Metab 86:1532–1538

    CAS  PubMed  Google Scholar 

  • Olson L, Seiger Å (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137:301–316

    CAS  PubMed  Google Scholar 

  • Olson L, Seiger Å, Fuxe K (1972) Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 44:283–288

    CAS  PubMed  Google Scholar 

  • Olson L, Boreus LO, Seiger Å (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwicklungsgesch 139:259–282

    CAS  PubMed  Google Scholar 

  • Olsson M, Campbell K, Wictorin K, Björklund A (1995) Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 69:1169–1182

    CAS  PubMed  Google Scholar 

  • Olsson M, Björklund A, Campbell K (1998) Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84:867–876

    CAS  PubMed  Google Scholar 

  • Onye C (1990) Thalamus. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 439–468

    Google Scholar 

  • Opitz JM (1993) Blastogenesis and the “primary field” in human development. Birth Defects Orig Artic Ser 29:3–37

    CAS  PubMed  Google Scholar 

  • Opitz JM, Wilson GN, Gilbert-Barness E (1997) Abnormalities of blastogenesis, organogenesis, and phenogenesis. In: Gilbert-Barness E (ed) Potter’s pathology of the fetus and infant. Mosby, St. Louis, pp 65–105

    Google Scholar 

  • Ortmann R (1989) Über Sinneszellen am fetalen vomeronasalen Organ des Menschen. HNO 37:191–197

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) GABA-containing neurons in the thalamus and pretectum of the rodent. An immunocytochemical study. Anat Embryol (Berl) 170:197–207

    CAS  Google Scholar 

  • Padberg G, Bruyn GW (1986) Chorea: differential diagnosis. Handb Clin Neurol 5:549–564

    Google Scholar 

  • Panganiban G, Rubinstein JLR (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129:4371–4386

    CAS  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    CAS  PubMed  Google Scholar 

  • Parent A, Côté P-Y, Lavoie B (1995) Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:131–197

    CAS  PubMed  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    CAS  PubMed  Google Scholar 

  • Paroder V, Miller I, Shanske AL, Shiota K, Khan MN, Cohen MM Jr (2013) Hidden pituitary gland: implications for accessment. Am J Med Genet A 161A:630–631

    PubMed  Google Scholar 

  • Parsa CF, Goldberg MF, Hunter DG (2002) Papillorenal (“renal coloboma”) syndrome. Am J Ophthalmol 134:300–301

    PubMed  Google Scholar 

  • Pasternak JF, Predey TA, Mikhael ME (1991) Neonatal asphyxia: vulnerability of basal ganglia, thalamus and brainstem. Pediatr Neurol 7:147–149

    CAS  PubMed  Google Scholar 

  • Pearson AA (1941a) The development of the nervus terminalis in man. J Comp Neurol 75:39–66

    Google Scholar 

  • Pearson AA (1941b) The development of the olfactory nerve in man. J Comp Neurol 75:199–217

    Google Scholar 

  • Pearson AA (1942) The development of the olfactory nerve, the nervus terminalis, and the vomeronasal nerve in man. Ann Otol Rhinol Laryngol 51:317–333

    Google Scholar 

  • Pearson J, Brandeis L, Goldstein M (1980) Appearance of tyrosine hydroxylase immunoreactivity in the human embryo. Dev Neurosci 3:140–150

    CAS  PubMed  Google Scholar 

  • Pellegrini M, Monsouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation requires Emx2. Development 122:3893–3898

    CAS  PubMed  Google Scholar 

  • Percheron G (2004) Thalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 592–675

    Google Scholar 

  • Pichaud F, Desplan C (2002) Pax genes and eye organogenesis. Curr Opin Genet Dev 12:430–434

    CAS  PubMed  Google Scholar 

  • Pickel VM, Specht LA, Sumal KK, Joh TH, Reis DJ, Hervonen A (1980) Immunocytochemical localization of tyrosine hydroxylase in the human fetal nervous system. J Comp Neurol 194:465–474

    CAS  PubMed  Google Scholar 

  • Pilavdzic D, Kovacs K, Asa SL (1997) Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 65:164–172

    CAS  PubMed  Google Scholar 

  • Pineda-Alvarez DE, Solomon BD, Roessler E, Balog JZ, Hadley DW, Zein WM et al (2011) A broad range of ophthalmologic anomalies is part of the holoprosencephaly spectrum. Am J Med Genet A 155:2713–2720

    PubMed Central  Google Scholar 

  • Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel L et al (2005) CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab 90:5621–5626

    CAS  PubMed  Google Scholar 

  • Pooh R (2009) Neuroscan of congenital brain abnormality. In: Kurjak A, Pooh R (eds) Fetal neurology. Jaypee, St Louis, pp 59–139

    Google Scholar 

  • Porteus MH, Bulfone A, Liu JK, Puelles L, Lo LC, Rubinstein JLR (1994) DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J Neurosci 14:6370–6383

    CAS  PubMed  Google Scholar 

  • Prader A, Labhart A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myotonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261

    Google Scholar 

  • Price JL (1990) Olfactory system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 979–990

    Google Scholar 

  • Price JL, Drevets WC (2011) Neural circuits underlying the pathophysiology of mood disorders. Trends Neurosci 16:61–71

    Google Scholar 

  • Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD Jr, Noebels JR (2009) A triplet repeat expansion genetic mouse model of infantile spasm syndrome, Arx (GCG)10 + 7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 29:8752–8763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Probst FP (1979) The prosencephalies, morphology, neuroradiological appearances and differential diagnosis. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Prosser J, van Heyningen V (1998) PAX6 mutation review. Hum Mutat 11:93–108

    CAS  PubMed  Google Scholar 

  • Provis JM, van Driel D, Billson FA, Russell P (1985a) Development of the human retina: patterns and mechanisms of cell distribution and redistribution in the ganglion cell layer. J Comp Neurol 233:429–451

    CAS  PubMed  Google Scholar 

  • Provis JM, van Driel D, Billson FA, Russell P (1985b) Human fetal optic nerve: overproduction and elimination of retinal axons during development. J Comp Neurol 238:92–100

    CAS  PubMed  Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubinstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    CAS  PubMed  Google Scholar 

  • Puelles L, Verney C (1998) Early neuromeric distribution of tyrosine-hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol 394:283–308

    CAS  PubMed  Google Scholar 

  • Puelles L, Amat JA, Martínez de la Torre M (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos. I. Topography of AChE-positive neuroblasts up to stage HH18. J Comp Neurol 266:247–268

    CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    CAS  PubMed  Google Scholar 

  • Puelles L, Martínez S, Martínez de la Torre M (2008) Neuroanatomía. Médica Panamericana, Buenos Aires/Madrid (in Spanish)

    Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Bardet S, Rubinstein JLR (2012a) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 221–312

    Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Ferran J-L, Watson C (2012b) Diencephalon. In: Warson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 313–316

    Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    CAS  PubMed  Google Scholar 

  • Pulitzer SB, Simon EM, Crombleholme TM, Golden JA (2004) Prenatal MR findings of the middle interhemispheric variant of holoprosencephaly. AJNR Am J Neuroradiol 25:1034–1036

    PubMed  Google Scholar 

  • Pyatkina GA (1982) Development of the olfactory epithelium in man. Z Mikrosk Anat Forsch 96:361–372

    CAS  PubMed  Google Scholar 

  • Qiu M, Bulfone A, Martinez S, Meneses JJ, Shimamura K, Pedersen RA, Rubinstein JLR (1995) Null mutations of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 9:2523–2538

    CAS  PubMed  Google Scholar 

  • Quinton R, Duke VM, de Zoysa PA, Platts AD, Valentine A, Kendall B et al (1996) The neuroradiology of Kallmann’s syndrome: a genotypic and phenotypic analysis. J Clin Endocrinol Metab 81:3010–3017

    CAS  PubMed  Google Scholar 

  • Rademakers RP, van der Knaap MS, Verbeeten B, Barth P, Valk J (1995) Central cortico-subcortical involvement: a distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants. J Comput Assist Tomogr 19:256–263

    CAS  PubMed  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427

    CAS  PubMed  Google Scholar 

  • Rakic P (1975) Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Buchwald NA, Brazier MAB (eds) Brain mechanisms of mental retardation. Academic, New York, pp 3–40

    Google Scholar 

  • Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471

    CAS  PubMed  Google Scholar 

  • Rakic P (1977a) Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Boil Sci 278:245–260

    CAS  Google Scholar 

  • Rakic P (1977b) Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol 176:23–52

    CAS  PubMed  Google Scholar 

  • Rakić P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82

    PubMed  Google Scholar 

  • Rallu M, Machold R, Gaiano N, Corbin JG, McMahon AP, Fishell G (2002a) Dorso-ventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129:4963–4974

    CAS  PubMed  Google Scholar 

  • Rallu M, Corbin JG, Fishell G (2002b) Parsing the prosencephalon. Nat Rev Neurosci 3:943–951

    CAS  PubMed  Google Scholar 

  • Rathke H (1838) Über die Entstehung der Glandula pituitaria. Arch Anat Physiol Wiss Med 1838:482–485

    Google Scholar 

  • Rieger DK, Reichenberger E, MacLean W, Sidow A, Olsen BR (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72:61–72

    CAS  PubMed  Google Scholar 

  • Rittig S, Robertson GL, Siggaard C, Kovács L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58:107–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson BH (2001) Lactic acidemia: disorders of pyruvate carboxylase and pyruvate dehydrogenase. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2275–2295

    Google Scholar 

  • Roessler E, Muenke M (1998) Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inherit Metab Dis 21:481–497

    CAS  PubMed  Google Scholar 

  • Roessler E, Muenke M (2001) Midline and laterality defects: left and right meet in the midline. Bioessays 23:888–900

    CAS  PubMed  Google Scholar 

  • Roessler E, Muenke M (2010) The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet 154C:52–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW et al (1996) Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat Genet 14:357–360

    CAS  PubMed  Google Scholar 

  • Roessler E, Du Y-Z, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G et al (2003) Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci U S A 100:13424–13429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roessler E, Ouspenskaia MV, Karkera JD, Vélez JI, Kantipong A, Lacbawan F et al (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roessler E, Lacbawan F, Dubourg C, Paulussen A, Herbergs J, Hehr U et al (2009) The full spectrum of holoprosencephaly-associated mutations with the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat 39:E541–E544

    Google Scholar 

  • Roessmann U, Schwarz JF (1973) Familial striatal degeneration. Arch Neurol 29:314–317

    CAS  PubMed  Google Scholar 

  • Roessmann U, Velasco ME, Small EJ, Hori A (1987) Neuropathology of “septo-optic dysplasia” (de Morsier syndrome) with immunohistochemical studies of the hypothalamus and pituitary gland. J Neuropathol Exp Neurol 46:597–608

    CAS  PubMed  Google Scholar 

  • Rohr KB, Barth KA, Varga ZM, Wilson SW (2001) The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 29:341–351

    CAS  PubMed  Google Scholar 

  • Rubinstein JLR, Beachy PA (1998) Patterning of the embryonic forebrain. Curr Opin Neurobiol 8:18–26

    Google Scholar 

  • Rubinstein JLR, Shimamura K, Martínez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Google Scholar 

  • Rugarli EI (1999) Kallmann syndrome and the link between olfactory and reproductive development. Am J Hum Genet 65:943–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rugarli EI, Lutz B, Kuratani SC, Wawersik S, Borsani G, Ballabio A, Eichele G (1993) Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nat Genet 4:19–26

    CAS  PubMed  Google Scholar 

  • Rutherford MA (2002) Magnetic resonance imaging of injury in the immature brain. In: Squier W (ed) Acquired damage to the developing brain: timing and causation. Arnold, London, pp 166–192

    Google Scholar 

  • Rutherford MA, Pennock JM, Murdoch-Eaton DM, Cowan FM, Dubowitz LM (1992) Athetoid cerebral palsy with cysts in the putamen after hypoxic-ischemic encephalopathy. Arch Dis Child 67:846–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford MA, Pennock JM, Schwieso JE, Cowan FM, Dubowitz LM (1995) Hypoxic ischemic encephalopathy: early magnetic resonance imaging findings and their evolution. Neuropediatrics 26:183–191

    CAS  PubMed  Google Scholar 

  • Sachdeva R, Traboulsi EI (2012) Aniridia. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 109–123

    Google Scholar 

  • Sailaja K, Gopinath G (1994) Developing substantia nigra in human: a qualitative study. Dev Neurosci 16:44–52

    CAS  PubMed  Google Scholar 

  • Sanger TD (2003) Pathophysiology of pediatric movement disorders. J Child Neurol 18:S9–S24

    PubMed  Google Scholar 

  • Sanlaville D, Etchevers HC, Gonzalez M, Martinovic J, Clément-Ziza M, Delezoide A-L et al (2006) Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 43:211–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos A, Traboulsi EI (2012) Congenital abnormalities of the retinal pigment epithelium. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 150–162

    Google Scholar 

  • Saper CB (2004) Hypothalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic, San Diego, pp 514–550

    Google Scholar 

  • Sarnat HB (2000) Molecular genetic classification of central nervous system malformations. J Child Neurol 15:675–687

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2001) Neuropathologic research strategies in holoprosencephaly. J Child Neurol 16:918–931

    CAS  PubMed  Google Scholar 

  • Sato K, Mano T, Sakurai M, Furukawa T (1975) Isolated thyrotropin deficiency: a case with abnormal leukocytes function. Clin Endocrinol 23:525–529

    CAS  Google Scholar 

  • Savic I, Berglund H, Gulyas B, Roland P (2001) Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron 30:661–668

    Google Scholar 

  • Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11:393–404

    CAS  PubMed  Google Scholar 

  • Schmahl W, Knoedlseder M, Favor J, Davidson D (1993) Defects of neuronal migration and the pathogenesis of cortical malformations are associated with small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol (Berl) 86:126–135

    CAS  Google Scholar 

  • Scholpp S, Lumsden A (2010) Building a bridal chamber: development of the thalamus. Trends Neurosci 33:373–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679

    CAS  PubMed  Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH et al (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    CAS  PubMed  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12:26–34

    CAS  PubMed  Google Scholar 

  • Schwalbe G (1880) Beiträge zur Entwicklungsgeschichte des Zwischenhirns. Sitz Ber Jen Ges Med Naturwiss 20:2–7

    Google Scholar 

  • Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338:161–164

    CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone releasing hormone (LHRH)-expressing cells do not migrate in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326

    CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin J-P, Petit C (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 366:547–557

    CAS  PubMed  Google Scholar 

  • Schwind JL (1928) The development of the hypophysis cerebri of the albino rat. Am J Anat 41:295–315

    Google Scholar 

  • Schwob JE, Price JL (1984) The development of axonal connections in the central olfactory system of rats. J Comp Neurol 223:177–202

    CAS  PubMed  Google Scholar 

  • Seibt J, Schuurmans C, Gradwhol G, Dehay C, Vanderhaeghen P, Guillemot F, Polleux F (2003) Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target clues. Neuron 39:439–452

    CAS  PubMed  Google Scholar 

  • Seiger Å, Olson L (1973) Late prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 140:281–318

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections of the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  • Semina EV, Reiter RS, Murray J (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 6:2109–2116

    CAS  PubMed  Google Scholar 

  • Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WLM, Reiter RS et al (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMB. Nat Genet 19:167–170

    CAS  PubMed  Google Scholar 

  • Sergi C, Schmitt HP (2000) The vesicular forebrain (pseudo-aprosencephaly): a missing link in the teratogenic spectrum of defective brain anlage and its discrimination from aprosencephaly. Acta Neuropathol (Berl) 99:277–284

    CAS  Google Scholar 

  • Shanmugalingam S, Houart C, Picker A, Reifers F, Macdonald R, Barth A et al (2000) Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127:2549–2561

    CAS  PubMed  Google Scholar 

  • Shatz CJ (1983) The prenatal development of the cat’s retinogeniculate pathway. J Neurosci 3:482–499

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Luskin MB (1986) Relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex. J Neurosci 6:3655–3668

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Rakic P (1981) The genesis of efferent connections from the visual cortex of the fetal rhesus monkey. J Comp Neurol 196:287–307

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Ghosh A, McConnell SK, Allendoerfer KL, Friauf E, Antonini A (1990) Pioneer neurons and target selection in cerebral cortical development. Cold Spring Harb Symp Quant Biol 55:469–480

    CAS  PubMed  Google Scholar 

  • Sheng HZ, Westphal H (1999) Early steps in pituitary organogenesis. Trends Genet 15:236–240

    CAS  PubMed  Google Scholar 

  • Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H (1997) Multistep control of pituitary organogenesis. Science 278:1809–1812

    CAS  PubMed  Google Scholar 

  • Shepherd GM, Greer CA (1990) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 133–169

    Google Scholar 

  • Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early shield stage. Development 122:1311–1322

    Google Scholar 

  • Shimamura K, Rubinstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martínez S, Puelles L, Rubinstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:767–775

    CAS  PubMed  Google Scholar 

  • Shiota K (1993) Teratothanasia: prenatal loss of abnormal conceptuses and the prevalence of various malformations during human gestation. Birth Defects Orig Artic Ser 29:189–199

    CAS  PubMed  Google Scholar 

  • Shiota K, Yamada S (2010) Early pathogenesis of holoprosencephaly. Am J Med Genet C Semin Med Genet 154C:22–28

    PubMed  Google Scholar 

  • Shipley MI, McLean JH, Ennis M (1995) Olfactory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 899–926

    Google Scholar 

  • Sie LTL, van der Knaap MS, Oostings J, de Vries L, Lafeber HN, Valk J (2000) MR pattern of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 31:128–136

    CAS  PubMed  Google Scholar 

  • Siebert JR, Warkany J, Lemire RJ (1986) Atelencephalic microcephaly in a 21 week human fetus. Teratology 34:9–19

    CAS  PubMed  Google Scholar 

  • Siebert JR, Kokich VG, Warkany J, Lemire RJ (1987) Atelencephalic microcephaly: craniofacial anatomy and morphologic comparisons with holoprosencephaly and anencephaly. Teratology 36:279–285

    CAS  PubMed  Google Scholar 

  • Siebert JR, Cohen MM Jr, Sulik KK, Shaw C-M, Lemire RJ (1990) Holoprosencephaly: an overview and atlas. Wiley-Liss, New York

    Google Scholar 

  • Silver J, Robb RM (1979) Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Dev Biol 68:175–190

    CAS  PubMed  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690

    CAS  PubMed  Google Scholar 

  • Simeone A, Acampora D, Mallaci A, Stornaiuolo A, D’Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12:2735–2747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon EM, Hevner RF, Pinter JD, Kinsman SL, Hahn J, Barkovich AJ (2000) Assessment of the deep gray nuclei in holoprosencephaly. AJNR Am J Neuroradiol 21:1955–1961

    CAS  PubMed  Google Scholar 

  • Simon EM, Hevner RF, Pinter JD et al (2001) The dorsal cyst in holoprosencephaly and the role of the thalami in its formation. Neuroradiology 43:787–791

    CAS  PubMed  Google Scholar 

  • Simon EM, Hevner RF, Pinter JD, Clegg NJ, Delgado M, Kinsman SL et al (2002) The middle interhemispheric variant of holoprosencephaly. AJNR Am J Neuroradiol 23:151–155

    PubMed  Google Scholar 

  • Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, Stevens JM et al (2001) PAX6 haplo-insufficiency causes cerebral malformations and olfactory dysfunction in humans. Nat Genet 28:214–216

    CAS  PubMed  Google Scholar 

  • Skidmore JM, Cramer JD, Martin JF, Martin DM (2008) Cre fate mapping reveals lineage specific defects in neuronal migration with loss of Pitx2 function in the developing mouse hypothalamus and subthalamic nucleus. Mol Cell Neurosci 37:696–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    PubMed Central  PubMed  Google Scholar 

  • Smidt MP, van Schaick HSA, Lanctôt C, Tremblay JJ, Cox JJ, van der Kleij AAM et al (1997) A homeodomain gene PITX3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A 94:13305–13310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmxb1. Nat Neurosci 3:337–341

    CAS  PubMed  Google Scholar 

  • Smith JEH, Traboulsi EI (2012) Malformations of the anterior segment of the eye. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 92–108

    Google Scholar 

  • Smith-Fernández A, Pieau C, Repérant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: Implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111

    Google Scholar 

  • Soffer D, Amir N, Elpeleg ON, Gomori JM, Shalev RS, Gottschalk-Sabeg S (1992) Striatal degeneration and spongy myelinopathy in glutaric aciduria. J Neurol Sci 107:199–204

    CAS  PubMed  Google Scholar 

  • Solomon BD, Pineda-Alvarez DE, Mercier S, Raam MS, Odent S, Muenke M (2010) Holoprosencephaly flashcards: a summary for the clinician. Am J Med Genet C Semin Med Genet 154C:3–7

    PubMed  Google Scholar 

  • Sousa VH, Fishell G (2010) Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev 20:391–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA et al (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192

    CAS  PubMed  Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981a) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol 199:233–253

    CAS  PubMed  Google Scholar 

  • Specht LA, Pickel VM, Joh TH, Reis DJ (1981b) Light-microscopical immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol 199:255–276

    CAS  PubMed  Google Scholar 

  • Squier W (2002) Pathology of fetal and neonatal brain damage: Identifying the timing. In: Squier W (ed) Acquired damage to the developing brain: timing and causation. Arnold, London, pp 110–127

    Google Scholar 

  • Stein J, Walsh V (1997) To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci 20:147–152

    CAS  PubMed  Google Scholar 

  • Steingrimsson E, Moore KJ, Lamoreux ML, Ferré-D’Amaré A, Burley SK, Zimring DCS et al (1994) Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 8:256–263

    CAS  PubMed  Google Scholar 

  • Stenman J, Yu RT, Evans RM, Campbell K (2003) Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130:1113–1122

    CAS  PubMed  Google Scholar 

  • Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, vol 4, Teil 9. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat (Basel) 98:130–153

    CAS  Google Scholar 

  • Stoykova A, Fritsch R, Walther C, Gruss P (1996) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    Google Scholar 

  • Stoykova A, Treichel D, Hallonot M, Gruss P (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J Neurosci 20:8042–8050

    CAS  PubMed  Google Scholar 

  • Stühmer T, Anderson SA, Ekker M, Rubinstein JLR (2002) Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129:245–252

    PubMed  Google Scholar 

  • Suda Y, Hossain ZM, Kobayashi C, Hatano O, Yoshida M, Matsuo I, Aizawa S (2001) Emx2 directs the development of diencephalon in cooperation with Otx2. Development 128:2433–2450

    CAS  PubMed  Google Scholar 

  • Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129:329–337

    CAS  PubMed  Google Scholar 

  • Sundin OH (2012) Embryology of the eye and the role of developmental genes. In: Traboulsi EI (ed) Genetic diseases of the eye, 2nd edn. Oxford University Press, Oxford, pp 5–22

    Google Scholar 

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251–262

    CAS  PubMed  Google Scholar 

  • Sussel L, Marín O, Kimura S, Rubinstein JLR (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  • Swaab DF (1997) Neurobiology and neuropathology of the human hypothalamus. In: Bloom FE, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 13, The primate nervous system. Part I. Elsevier, Amsterdam, pp 39–137

    Google Scholar 

  • Swaab DF (2003) The human hypothalamus: basic and clinical aspects, part 1: nuclei of the human hypothalamus. Handb Clin Neurol 79

    Google Scholar 

  • Swaab DF (2004) The human hypothalamus: basic and clinical aspects, part 2: neuropathology of the human hypothalamus and adjacent structures. Handb Clin Neurol 80

    Google Scholar 

  • Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115

    CAS  PubMed  Google Scholar 

  • Swaab DF, Hofman MA (1988) Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Brain Res Dev Brain Res 44:314–318

    CAS  PubMed  Google Scholar 

  • Swaab DF, Hofman MA, Lucassen PJ, Purba JS, Raadsheer FC, van de Nes JAP (1993) Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol (Berl) 187:317–330

    CAS  Google Scholar 

  • Switzer RC, Hill J, Heimer L (1982) The globus pallidus and its rostroventral extension into the olfactory tubercle in the rat: a cyto- and chemoarchitectural study. Neuroscience 7:1891–1904

    CAS  PubMed  Google Scholar 

  • Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C et al (1999) Role of the bicoid-related homeodomain factor Pitx1 in specifying hindlimb morohogenesis and pituitary development. Genes Dev 13:484–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Ohama E, Naito H et al (1988) Hereditary dentato-rubro-pallido-luysian atrophy: clinical and pathologic variants in a family. Neurology 38:1065–1070

    CAS  PubMed  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    CAS  PubMed  Google Scholar 

  • Tan SS, Kalloniatis M, Sturm K, Tam PP, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral cortex. Neuron 21:295–304

    CAS  PubMed  Google Scholar 

  • Tassabehji M, Newton VE, Read AP (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 8:251–255

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Cruysberg JRM (2011) The visual system. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin/Heidelberg/New York, pp 331–365

    Google Scholar 

  • ten Donkelaar HJ, Dederen PJW (1979) Neurogenesis in the basal forebrain of the Chinese hamster (Cricetulus griseus). I. Time of neuron origin. Anat Embryol (Berl) 156:331–348

    Google Scholar 

  • ten Donkelaar HJ, Hori A (2011) The hypothalamus and hypothalamohypohysial systems. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin/Heidelberg/New York, pp 603–631

    Google Scholar 

  • ten Donkelaar HJ, Lammers GJ, Gribnau AAM (1979) Neurogenesis in the amygdaloid nuclear complex in a rodent (the Chinese hamster). Brain Res 165:348–353

    PubMed  Google Scholar 

  • ten Donkelaar HJ, van de Warrenburg B, Willemsen M, Küsters B, Hashizume Y, Hori A (2011) Basal ganglia. In: ten Donkelaar HJ (ed) Clinical neuroanatomy: brain circuitry and its disorders. Springer, Berlin/Heidelberg/New York, pp 495–564

    Google Scholar 

  • Tennyson VM, Barrett RE, Cohen G, Côté L, Heikkila R, Mytilineou C (1972) The developing neostriatum of the rabbit: correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and [3H] dopamine uptake. Brain Res 46:251–285

    CAS  PubMed  Google Scholar 

  • Theil T, Alvarez-Bolado G, Walter A, Ruther U (1999) Gli3 is required for Emx gene expression during dorsal telencephalic development. Development 126:3561–3571

    CAS  PubMed  Google Scholar 

  • Theiler K (1972) The house mouse – development and normal stages from fertilization to 4 weeks of age. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Theiler K, Varnum DS, Nadeau JH, Stevens LC, Cagianut B (1976) A new allele of ocular retardation: early development and morphogenetic cell death. Anat Embryol (Berl) 150:85–97

    CAS  Google Scholar 

  • Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M et al (2001) Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet 10:39–45

    CAS  PubMed  Google Scholar 

  • Tole S, Goudreau G, Assimacopoulos S, Grove E (2000a) Emx2 is required for growth of the hippocampus but not for hippocampal field specification. J Neurosci 20:2618–2625

    CAS  PubMed  Google Scholar 

  • Tole S, Ragsdale CW, Grove EA (2000b) Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extratoes (J). Dev Biol 217:254–265

    CAS  PubMed  Google Scholar 

  • Toresson H, Campbell K (2001) A role for Gsh1 in the developing striatum and olfactory bulb of Gsh mutant mice. Development 128:4679–4689

    Google Scholar 

  • Toresson H, Potter S, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127:4361–4371

    CAS  PubMed  Google Scholar 

  • Torres M, Gomez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–3391

    CAS  PubMed  Google Scholar 

  • Towfighi J, Ladda RL, Sharkey FE (1987) Purkinje cell inclusions and ‘atelencephaly’ in 13q-chromosomal syndrome. Arch Pathol Lab Med 111:146–150

    CAS  PubMed  Google Scholar 

  • Treier M, O’Connell S, Gleiberman A, Price J, Szeto DP, Burgess R et al (2001) Hedgehog signaling is required for pituitary glandular development. Development 128:377–386

    CAS  PubMed  Google Scholar 

  • Trottier D, Eloit C, Wassef M, Talmain G, Bensimon JL, Døving KB, Ferrard J (2000) The vomeronasal cavity in adult humans. Chem Senses 25:369–380

    Google Scholar 

  • Truslove GM (1962) A gene causing ocular retardation in the mouse. J Embryol Exp Morphol 10:652–660

    CAS  PubMed  Google Scholar 

  • Truwit CL, Barkovich AJ, Grumbach MM, Martini JJ (1993) MR imaging of Kallmann syndrome, a genetic disorder of neuronal migration affecting the olfactory and genital sytems. AJNR Am J Neuroradiol 14:827–838

    CAS  PubMed  Google Scholar 

  • Tulinius M, Moslemi A-R, Darin N, Westerberg B, Wiklund L-M, Holme E, Oldfors A (2003) Leigh syndrome with cytochrome-c oxidase deficiency and a single T insertion nt 5537 in the mitochondrial tRNATrp gene. Neuropediatrics 34:87–91

    CAS  PubMed  Google Scholar 

  • Tuttle R, Nakagawa Y, Johnson JE, O’Leary DDM (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 1256:1903–1916

    Google Scholar 

  • Tvrdik P, Capecchi MR (2012) Gene targeting. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 19–35

    Google Scholar 

  • Ulfig N (2002a) Ganglionic eminence of the human fetal brain – new vistas. Anat Rec 267:191–195

    PubMed  Google Scholar 

  • Ulfig N (2002b) Calcium-binding proteins in the human developing brain. Adv Anat Embryol Cell Biol 165:1–95

    Google Scholar 

  • Ulfig N, Nickel J, Bohl J (1998) Transient features of the thalamic reticular nucleus in the human foetal brain. Eur J Neurosci 10:3773–3784

    CAS  PubMed  Google Scholar 

  • Ulfig N, Neudörfer F, Bohl J (2001) Development-related expression of AKAP79 in the striatal compartments of the human brain. Cells Tissues Organs 168:319–329

    CAS  PubMed  Google Scholar 

  • Ulfig N, Setzer M, Bohl J (2003a) Ontogeny of the human amygdala. Ann NY Acad Sci 985:22–33

    CAS  PubMed  Google Scholar 

  • Ulfig N, Bohl J, Setzer M (2003b) Expression of NMDAR1 in the human fetal amygdala and the adjacent ganglionic eminence. Neuroendocrinology 2:40–42

    Google Scholar 

  • Vaizey MJ, Sanders MD, Wybar KC, Wilson J (1977) Neurological abnormalities in congenital amaurosis of Leber. Review of 30 cases. Arch Dis Child 52:399–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542

    PubMed  Google Scholar 

  • Van der Kooy D, Fishell G, Krushel LA, Johnston JG (1987) The development of striatal compartments: from proliferation to patches. In: Carpenter MB, Jarayaman A (eds) The basal ganglia. Structures and concepts – current concepts. . Plenum, New York, pp 81–98

    Google Scholar 

  • van Domburg PHMF, ten Donkelaar HJ (1990) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 121:1–132

    Google Scholar 

  • van Eden CG, Mrzljak L, Voorn P, Uylings HBM (1989) Prenatal development of GABAergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    PubMed  Google Scholar 

  • van Heyningen V, Williamson KA (2002) PAX6 in sensory development. Hum Mol Genet 11:1161–1167

    PubMed  Google Scholar 

  • Van Heyningen V, Williamson KA (2008) PAX6 and aniridia and related phenotypes. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development, 2nd edn. Oxford University Press, Oxford, pp 809–817

    Google Scholar 

  • Van Hoesen GW, Yeterian EH, Lavizzo-Mourney R (1981) Widespread corticostriate projections from temporal cortes of the rhesus monkey. J Comp Neurol 199:205–219

    PubMed  Google Scholar 

  • van Overbeeke JJ (1991) The development of the variations of the human basal cerebral arteries. University of Utrecht, Thesis

    Google Scholar 

  • van Overbeeke JJ, Hillen B, Vermeij-Keers C (1994) The arterial pattern at the base of arhinencephalic and holoprosencephalic brains. J Anat (Lond) 185:51–63

    Google Scholar 

  • Vanderhaeghen P, Polleux F (2004) Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci 27:384–391

    CAS  PubMed  Google Scholar 

  • Varga ZM, Wegner J, Westerfield M (1999) Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126:5533–5546

    CAS  PubMed  Google Scholar 

  • Vermeij-Keers C (1975) Primary congenital aphakia and the rubella syndrome. Teratology 11:257–266

    Google Scholar 

  • Vermeij-Keers C (1987) 6.5-mm Human embryo with a single nasal placode: cyclopia or hypotelorism? Teratology 36:1–6

    CAS  PubMed  Google Scholar 

  • Verney C, Berger B, Adrien J, Vigny A, Gay MC (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Brain Res 5:41–52

    Google Scholar 

  • Verney C, Zecevic N, Nikolic B, Alvarez C, Berger B (1991) Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-β-hydroxylase immunocytochemistry. Neurosci Lett 131:121–124

    CAS  PubMed  Google Scholar 

  • Verney C, Milosevic A, Alvarez C, Berger B (1993) Immunocytochemical evidence of well-developed dopaminergic and noadrenergic innervations in the frontal cerebral cortex of human fetuses at midgestation. J Comp Neurol 336:331–344

    CAS  PubMed  Google Scholar 

  • Verney C, El Amraoui A, Zecevic N (1996) Comigration of tyrosine hydroxylase- and gonadotrophin-releasing hormone-immunoreactive neurons in the nasal area of human embryos. Brain Res Dev Brain Res 97:251–259

    CAS  PubMed  Google Scholar 

  • Verney C, Zecevic N, Puelles L (2001a) Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 429:22–44

    CAS  PubMed  Google Scholar 

  • Verney C, Zecevic N, Ezan P (2001b) Expression of calbindin D28K in the dopaminergic mesotelencephalic system in embryonic and fetal human brain. J Comp Neurol 429:45–58

    CAS  PubMed  Google Scholar 

  • Visser M, Swaab DF (1979) Life span changes in the presence of α-melanocyte-stimulating-hormone-containing cells in the human pituitary. J Dev Physiol 1:161–178

    CAS  PubMed  Google Scholar 

  • Voit T, Lemburg P, Neuen E, Lumenta C, Strork W (1987) Damage of thalamus and basal ganglia in asphyxiated fullterm neonates. Neuropediatrics 18:176–181

    CAS  PubMed  Google Scholar 

  • Volpe P, Campobasso G, De Robertis V, Rembouskos G (2009) Disorders of prosencephalic development. Prenat Diagn 29:340–354

    CAS  PubMed  Google Scholar 

  • Voogd J, Nieuwenhuys R, van Dongen PAM, ten Donkelaar HJ (1998) Mammals. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 1637–2097

    Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    CAS  PubMed  Google Scholar 

  • Vortkamp A, Franz T, Gessler M, Grzeschik K-H (1992) Deletion of GLI3 supports the homology of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutant extra toes (Xt). Mamm Genome 3:461–463

    CAS  PubMed  Google Scholar 

  • Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K (2009) Distinct temporal requirements for the homeobox gene GSX2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63:451–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A et al (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22:196–198

    CAS  PubMed  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449

    CAS  PubMed  Google Scholar 

  • Wang Q, Chen Q, Zhao K, Wang L, Trabouli EI (2001) Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet 22:133–154

    CAS  PubMed  Google Scholar 

  • Warkany J (1971) Congenital malformations. Year Book Medical Publishers, Chicago

    Google Scholar 

  • Warner TT, Lennox GG, Janota I, Harding AE (1994) Autosomal-dominant dentato-rubro-pallido-luysian atrophy in the United Kingdom. Mov Disord 9:289–296

    CAS  PubMed  Google Scholar 

  • Warner TT, Lennox GG, Walker RWH et al (1995) A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol 37:452–459

    CAS  PubMed  Google Scholar 

  • Watanabe YG (1982) Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. I. Differentiation of adrenocorticotropes. Cell Tissue Res 227:257–266

    CAS  PubMed  Google Scholar 

  • Watkins-Chow DE, Camper SA (1998) How many homeobox genes does it take to make a pituitary gland? Trends Genet 14:284–290

    CAS  PubMed  Google Scholar 

  • Wawersik S, Purcell P, Maas RL (2000) Pax6 and the genetic control of early eye development. In: Fini ME (ed) Vertebrate eye development. Springer, Berlin/Heidelberg/New York, pp 15–36

    Google Scholar 

  • Wichmann T, DeLong MR, Vitel JL (2000) Pathophysiological considerations in basal ganglia surgery: role of the basal ganglia in hypokinetic and hyperkinetic movement disorders. In: Lozano AM (ed) Movement disorder surgery, vol 15, Progress in neurological surgery. Karger, Basel, pp 31–57

    Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466

    CAS  PubMed  Google Scholar 

  • Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  • Willnow S, Kiess W, Butenandt O, Dörr HG, Enders A, Strasser-Vogel B et al (1996) Endocrinbe disorders in septo-optic dysplasia (De Morsier syndrome) – evaluation and follow-up of 18 patients. Eur J Pediatr 155:179–184

    CAS  PubMed  Google Scholar 

  • Wolfram DJ (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Proc Staff Meet Mayo Clin 13:715–718

    Google Scholar 

  • Wray S, Nieburgs A, Elkabes S (1989a) Spatiotemporal cell expression of luteinizing hormone releasing hormone in the prenatal mouse: evidence for an embryonic origin in the olfactory pit. Brain Res Dev Brain Res 46:309–318

    CAS  PubMed  Google Scholar 

  • Wray S, Grant P, Gainer H (1989b) Evidence that cells expressing luteinizing hormone releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86:8132–8136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Xu Q, Cobos I, De la Cruz E, Rubinstein JLR (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622

    CAS  PubMed  Google Scholar 

  • Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506:16–29

    CAS  PubMed  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

    CAS  PubMed  Google Scholar 

  • Yakovlev PI (1959) Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies). J Neuropathol Exp Neurol 18:22–55

    CAS  PubMed  Google Scholar 

  • Yakovlev PI (1969) The development of the nuclei of the dorsal thalamus and the cerebral cortex. In: Locke S (ed) Modern neurology (papers in tribute to Professor Denny Derek-Brown). Little, Brown, Boston, pp 1–15

    Google Scholar 

  • Yamada S, Uwabe C, Fujii S, Shiota K (2004) Phenotypic variability in human embryonic holoprosencephaly in the Kyoto collection. Birth Defects Orig Artic Ser 70:495–508

    CAS  Google Scholar 

  • Yamada S, Samtani RR, Es L, Lockett E, Uwabe C, Shiota K et al (2010) Developmental atlas of the early first trimester human embryo. Dev Dyn 239:1585–1595

    PubMed Central  PubMed  Google Scholar 

  • Yamadori T (1965) Die Entwicklung des Thalamuskerns mit ihren ersten Fasersystemen bei menschlichen Embryonen. J Hirnforsch 7:393–413

    CAS  PubMed  Google Scholar 

  • Yamanouchi H, Hirato J, Yokoo H, Nako Y, Morikawa A, Nakazato Y (1999) Olfactory bulb dysplasia: a novel subtype of neuronal migration disorder. Ann Neurol 46:783–786

    CAS  PubMed  Google Scholar 

  • Ye W, Shimamura K, Rubinstein JLR, Hynes MA, Rosenthal A (1998) FGF and Shh signals control dopaminergic and serotonergic cell fatwe in the anterior neural plate. Cell 93:755–766

    CAS  PubMed  Google Scholar 

  • Yilmaz Y, Alper G, Kilicoglu G, Celik L, Karadeniz L, Yilmaz-Degirmenci S (2001) Magnetic resonance imaging findings in patients with severe neonatal indirect hyperbilirubinemia. J Child Neurol 16:452–455

    CAS  PubMed  Google Scholar 

  • Yokochi K, Aiba K, Kodama M, Fujimoto S (1991) Magnetic resonance imaging in athetotic cerebral palsied children. Acta Paediatr Scand 80:818–823

    CAS  PubMed  Google Scholar 

  • Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124:101–111

    CAS  PubMed  Google Scholar 

  • Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205

    CAS  PubMed  Google Scholar 

  • Yun K, Potter S, Rubinstein JLR (2001) Gsh2 and Pax6 play complementary roles in dorsoventral paaterning of the mammalian telencephalon. Development 128:193–205

    CAS  PubMed  Google Scholar 

  • Zaki PA, Quinn JC, Price DJ (2003) Mouse models of telencephalic development. Curr Opin Genet Dev 13:423–437

    CAS  PubMed  Google Scholar 

  • Zečević N, Kostović I (1980) Synaptogenesis in developing neostriatum of the human fetus. Neurosci Lett Suppl 5:S311

    Google Scholar 

  • Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol 351:509–535

    CAS  PubMed  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell, Oxford

    Google Scholar 

  • Zeki SM, Hollman AS, Dutton GN (1992) Neuroradiological features of patients with optic nerve hypoplasia. J Pediatr Ophthalmol Strabismus 29:107–112

    CAS  PubMed  Google Scholar 

  • Zeltser L, Larsen C, Lumsden A (2001) A novel developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci 4:683–685

    CAS  PubMed  Google Scholar 

  • Zetterstrom RM, Williams R, Perlmann T, Olson L (1996) Cellular expression of the intermediate early transcription factors Nurr1 and NGFI-B suggest a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Mol Brain Res 41:111–120

    CAS  PubMed  Google Scholar 

  • Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    CAS  PubMed  Google Scholar 

  • Zeviani M, Bertagnolio B, Uziel G (1996) Neurological presentations of mitochondrial diseases. J Inherit Metab Dis 19:504–520

    CAS  PubMed  Google Scholar 

  • Zhao T, Szábo N, Ma J, Luo L, Zhou X, Alvarez-Bolado G (2008) Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci 28:1941–1955

    PubMed Central  PubMed  Google Scholar 

  • Zhu X, Rosenfeld MG (2004) Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev 14:567–574

    CAS  PubMed  Google Scholar 

  • Zschocke J, Quak E, Guldberg P, Hoffmann GF (2000) Mutation analysis in glutaric aciduria type 1. J Med Genet 37:177–181

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Lammens, M., Cruysberg, J.R.M., Ulzen, K.Kv., Hori, A., Shiota, K. (2014). Development and Developmental Disorders of the Forebrain. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics