Skip to main content

Mechanisms of Development

  • Chapter
  • First Online:
Clinical Neuroembryology

Abstract

Many of the mechanisms underlying neural development are basically similar in vertebrates and invertebrates. Among vertebrates, popular species for experimental studies are zebrafish, the South African clawed toad, the chick embryo and mice. In mice, many spontaneously occurring mutations affecting the cerebral cortex and the cerebellum have been described. Their molecular analysis, combined with transgenic technology to achieve ectopic gene expression and targeted gene ablation, has made the mouse the mammal of choice for molecular genetic studies of early development.

In this chapter mechanisms of development will be discussed with emphasis on neural induction (Sect. 2.2), cell lineage studies and fate mapping (Sect. 2.3), pattern formation of the forebrain and the hindbrain (Sect. 2.4), neurogenesis, gliogenesis and migration, of the cerebral cortex in particular (Sect. 2.5), axon outgrowth and guidance, focussing on the corpus callosum, the pyramidal tract and thalamocortical projections (Sect. 2.6), and programmed cell death (Sect. 2.7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acampora D, Simeone A (1999) Understanding the role of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci 22:116–122

    CAS  PubMed  Google Scholar 

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet P (1995) Forebrain and midbrain regions are deleted in Otx2 −/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Acampora D, Gulisano M, Broccoli V, Simeone A (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64:69–95

    CAS  PubMed  Google Scholar 

  • Alonso A, Merchón P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R et al (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhomobomeric domains. Brain Struct Funct 218:1229–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J (1966) Proliferation and migration of undifferentiated precursor cells in the rat during postnatal gliogenesis. Exp Neurol 16:263–278

    CAS  PubMed  Google Scholar 

  • Altman J (1970) Postnatal neurogenesis and the problem of neural plasticity. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 197–237

    Google Scholar 

  • Altman J, Bayer SA (1987a) Development of the precerebellar nuclei in the rat. I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol 257:477–489

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987b) Development of the precerebellar nuclei in the rat. II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol 257:490–512

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987c) Development of the precerebellar nuclei in the rat. III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol 257:513–528

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987d) Development of the precerebellar nuclei in the rat. IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol 257:529–552

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure and function. CRC, Boca Raton

    Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Theelen M, Nottebohm F (1988) Mapping of radial glia and of a new cell type in adult canary brain. J Neurosci 8:2707–2712

    CAS  PubMed  Google Scholar 

  • Amores A, Force A, Yan Y-L, Amemiya C, Fritz A, Ho RK et al (1998) Genome duplications in vertebrate evolution: evidence from zebrafish Hox clusters. Science 282:1711–1714

    CAS  PubMed  Google Scholar 

  • Andrews W, Liapi A, Plachez C, Camurri L, Zhang J, Mori S et al (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252

    CAS  PubMed  Google Scholar 

  • Appel B (2000) Zebrafish neural induction and patterning. Dev Dyn 203:155–168

    Google Scholar 

  • Araújo SJ, Tear G (2003) Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 4:910–922

    PubMed  Google Scholar 

  • Arendt D, Nübler-Jung K (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126:2309–2325

    CAS  PubMed  Google Scholar 

  • Ashburner M (1989) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Auclair F, Marchand R, Glover JC (1999) Regional patterning of reticulospinal and vestibulospinal neurons in the hindbrain of mouse and rat embryos. J Comp Neurol 411:288–300

    CAS  PubMed  Google Scholar 

  • Augsburger A, Schuchardt A, Hoslins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24:127–141

    CAS  PubMed  Google Scholar 

  • Auladell C, Pérez-Sust P, Supèr H, Soriano E (2000) The early development of thalamocortical and corticothalamic projections in the mouse. Anat Embryol (Berl) 201:169–179

    CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    CAS  PubMed  Google Scholar 

  • Bagnard D, Lohrum M, Uziel D, Puschel AW, Bolz J (1998) Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125:5043–5053

    CAS  PubMed  Google Scholar 

  • Bagri A, Marín O, Plump AS, Mak Y, Pleasure SJ, Rubinstein JLR, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    CAS  PubMed  Google Scholar 

  • Balinsky BI (1965) An introduction to embryology, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Bally-Cuif L, Hammerschmidt M (2003) Induction and patterning of neuronal development, and its connections to cell cycle control. Curr Opin Neurobiol 13:16–25

    CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC (1994) Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12:935–942

    CAS  PubMed  Google Scholar 

  • Barth KA, Kishimoto Y, Rohr KB, Seydler C, Schulte-Merker S, Wilson SW (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126:4977–4987

    CAS  PubMed  Google Scholar 

  • Bastiani MJ, Harrelson AL, Snow PM, Goodman CS (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48:745–755

    CAS  PubMed  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123

    CAS  PubMed  Google Scholar 

  • Bayer SA (1983) 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven, New York

    Google Scholar 

  • Bayer SA, Altman J (1995a) Neurogenesis and neuronal migration. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 1041–1078

    Google Scholar 

  • Bayer SA, Altman J (1995b) Principles of neurogenesis, neuronal migration and neural circuit formation. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 1079–1098

    Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric neuropathology. Williams & Wilkins, Baltimore, pp 54–107

    Google Scholar 

  • Beard J (1896) The history of a transient nervous apparatus in certain Ichthyopsida. An account of the development and regeneration of ganglion cells and nerve fibres. I. Raja batis. Zool Jahrb 9:319–426

    Google Scholar 

  • Beddington RSP (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    CAS  PubMed  Google Scholar 

  • Beddington RSP, Robertson EJ (1998) Anterior patterning in mouse. Trends Genet 14:277–284

    CAS  PubMed  Google Scholar 

  • Beddington RSP, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    CAS  PubMed  Google Scholar 

  • Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Gollettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57

    CAS  PubMed  Google Scholar 

  • Bentivoglio M, Mazzarello P (1999) The history of radial glia. Brain Res Bull 49:305–315

    CAS  PubMed  Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool (Stockh) 13:57–303

    Google Scholar 

  • Bergquist H (1952) Studies on the cerebral tube in vertebrates. Acta Zool (Stockh) 33:117–187

    Google Scholar 

  • Bergquist H, Källén B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–659

    CAS  PubMed  Google Scholar 

  • Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C et al (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151

    CAS  PubMed  Google Scholar 

  • Blakemore C, Molnár Z (1990) Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex. Cold Spring Harbor Symp Quant Biol 55:491–504

    CAS  PubMed  Google Scholar 

  • Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122:1165–1174

    CAS  PubMed  Google Scholar 

  • Blaschke AJ, Weiner JA, Chun J (1998) Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396:39–50

    CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Causeret F, Ezan F, Backer S, Hidalgo-Sánchez M (2005) Development of precerebellar nuclei: instructive factors and intracellular mediators in neuronal migration, survival and axonal pathfinding. Brain Res Rev 49:253–266

    CAS  PubMed  Google Scholar 

  • Bonhoeffer F, Huf J (1980) Recognition of cell types by axonal growth cones in vitro. Nature 288:162–164

    CAS  PubMed  Google Scholar 

  • Bonhoeffer F, Huf J (1982) In vitro experiments on axon guidance demonstrating an anterior-posterior gradient on the tectum. EMBO J 1:427–431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boonstra Z, Isacson O (1999) Apoptosis in neuronal development and transplantation: role of caspases and trophic factors. Exp Neurol 156:1–15

    Google Scholar 

  • Bourrat F, Sotelo C (1988) Migratory pathways and neuritic differentiation of inferior olivary neurons in rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res 467:19–37

    CAS  PubMed  Google Scholar 

  • Bourrat F, Sotelo C (1990) Early development of the rat precerebellar system: migratory routes, selective aggregation and neuritic differentiation of the inferior olive and lateral reticular nucleus neurons. An overview. Arch Ital Biol 128:151–170

    CAS  PubMed  Google Scholar 

  • Bouwmeester T, Leyns L (1997) Vertebrate head induction by anterior primitive endoderm. Bioessays 19:855–863

    CAS  PubMed  Google Scholar 

  • Bouwmeester T, Kim S-H, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    CAS  PubMed  Google Scholar 

  • Boyan G, Therianos S, Williams JLD, Reichert H (1995) Axonogenesis in the embryonic brain of the grasshopper Schistocerca gregaria: an identified cell analysis of early brain development. Development 121:75–86

    CAS  PubMed  Google Scholar 

  • Braisted JE, Tuttle R, O’Leary DDM (1999) Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Dev Biol 208:430–440

    CAS  PubMed  Google Scholar 

  • Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, O’Leary DDM (2000) Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J Neurosci 20:5792–5801

    CAS  PubMed  Google Scholar 

  • Braisted JE, Ringstedt T, O’Leary DDM (2009) Slits are chemorepellents endogenous to hypothalamus and steer thalamocortical axons into ventral telencephalon. Cereb Cortex 19(Suppl 1):i144–i151

    PubMed  PubMed Central  Google Scholar 

  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69:49–69

    PubMed  Google Scholar 

  • Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10:95–102

    CAS  PubMed  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS et al (1999) Slit proteins bind Robo receptors and have an evolutionary conserved role in repulsive axon guidance. Cell 96:795–806

    CAS  PubMed  Google Scholar 

  • Brown M, Keynes R, Lumsden A (2001) The developing brain. Oxford University Press, Oxford

    Google Scholar 

  • Brümmendorf T, Kenwrick S, Rathjen FG (1998) Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 8:87–97

    PubMed  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubinstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2, (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal boundaries. J Neurosci 13:3155–3172

    CAS  PubMed  Google Scholar 

  • Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38:389–401

    CAS  PubMed  Google Scholar 

  • Butt SJ, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S, Fishell G (2008) The requirement of Nkx2.1 in the temporal specification of cortical interneuron subtypes. Neuron 59:722–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    CAS  PubMed  Google Scholar 

  • Campagnoni AT (1995) Molecular biology of myelination. Oxford University Press, New York

    Google Scholar 

  • Campagnoni AT, Skoff RP (2001) The pathobiology of myelin mutants reveals novel biological functions of the MBP and PLP genes. Brain Pathol 11:74–91

    CAS  PubMed  Google Scholar 

  • Campbell K, Götz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25:235–238

    CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Castellani V, Chédotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27:237–249

    CAS  PubMed  Google Scholar 

  • Catania KC, Kaas JH (1997) The mole nose instructs the brain. Somatosens Motor Res 14:56–58

    CAS  Google Scholar 

  • Cepko C (1988) Retrovirus vectors and their applications in neurobiology. Neuron 1:345–353

    CAS  PubMed  Google Scholar 

  • Cepko CL, Golden JA, Szele FG, Lin JC (1997) Lineage analysis in the vertebrate central nervous system. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and cellular approaches to neural development. Oxford University Press, New York, pp 391–439

    Google Scholar 

  • Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morhogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23

    CAS  PubMed  Google Scholar 

  • Chédotal A, Pourquié O, Sotelo C (1995) Initial tract formation in the brain of the chick embryo: selective expression of the BEN/SC1/DM-GRASP cell adhesion molecule. Eur J Neurosci 7:198–212

    PubMed  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung LE, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    CAS  PubMed  Google Scholar 

  • Chitnis AB, Kuwada JY (1990) Axonogenesis in the brain of zebrafish embryos. J Neurosci 10:1892–1905

    CAS  PubMed  Google Scholar 

  • Choi BH (1981) Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Dev Brain Res 1:249–267

    Google Scholar 

  • Choi BH, Kim RC (1984) Expression of glial fibrillary acidic protein in immature oligodendroglia. Science 223:407–409

    CAS  PubMed  Google Scholar 

  • Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescence and electron microscope study. Brain Res 148:295–311

    CAS  PubMed  Google Scholar 

  • Chotard C, Salecker I (2004) Neurons and glia: team players in axon guidance. Trends Neurosci 27:655–661

    CAS  PubMed  Google Scholar 

  • Chuai M, Weijer CJ (2008) The mechanisms underlying primitive streak formation in the chick embryo. Curr Top Dev Biol 81:135–156

    PubMed  Google Scholar 

  • Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Clarke PGH, Clarke S (1996) Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol (Berl) 193:81–99

    CAS  Google Scholar 

  • Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118:151–162

    CAS  PubMed  Google Scholar 

  • Cobos I, Shimamura K, Rubinstein JLR, Martínez S, Puelles L (2001) Fate maps of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67

    CAS  PubMed  Google Scholar 

  • Cohen NR, Taylor JSH, Scott LB, Guillery RW, Soriano P, Furley AJ (1997) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 8:26–33

    Google Scholar 

  • Colamarino SA, Tessier-Lavigne M (1995) The role of the floor plate in axon guidance. Annu Rev Neurosci 18:497–529

    CAS  PubMed  Google Scholar 

  • Committee B (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262

    Google Scholar 

  • Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D et al (1997) Glial lineages and myelination in the central nervous system. J Anat (Lond) 190:161–200

    Google Scholar 

  • Constantine-Paton M, Law MI (1982) The development of maps and stripes in the brain. Sci Am 247:54–62

    Google Scholar 

  • Cook G, Tannahill D, Keynes R (1998) Axon guidance to and from choice points. Curr Opin Neurobiol 8:64–72

    CAS  PubMed  Google Scholar 

  • Cooke JE, Moens CB (2002) Boundary formation in the hindbrain: Eph only it were simple. Trends Neurosci 25:260–267

    CAS  PubMed  Google Scholar 

  • Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    CAS  PubMed  Google Scholar 

  • Corbin JG, Rutlin M, Gaiano N, Fishell G (2003) Combinational function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development 130:4895–4906

    CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    CAS  PubMed  Google Scholar 

  • Cowan WM, Wenger E (1968) Degeneration in the nucleus of origin of the preganglionic fibers to the chick ciliary ganglion following early removal of the optic vesicle. J Exp Zool 168:105–124

    CAS  PubMed  Google Scholar 

  • Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323–335

    CAS  PubMed  Google Scholar 

  • Crossley PH, Martínez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68

    CAS  PubMed  Google Scholar 

  • Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ et al (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A 100:9023–9027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    CAS  PubMed  Google Scholar 

  • Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17:346–349

    CAS  PubMed  Google Scholar 

  • Dale JK, Vesque C, Lints TJ, Sampath TK, Furley A, Dodd J, Placzek M (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90:257–269

    CAS  PubMed  Google Scholar 

  • Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22:323–330

    CAS  PubMed  Google Scholar 

  • Darnell DK, Stark MR, Schoenwolf GC (1999) Timing and cell interactions underlying neural induction in the chick embryo. Development 126:2505–2514

    CAS  PubMed  Google Scholar 

  • Davidson BP, Camus A, Tam PPL (1999) Cell fate and lineage specification in the gastrulating mouse embryo. In: Moody SA (ed) Cell lineage and determination. Academic, San Diego, pp 491–504

    Google Scholar 

  • de Azevedo LC, Hedin-Pereira C, Leht R (1997) Callosal neurons in the cingulate cortical plate and subplate of human fetuses. J Compeurol 386:60–70

    Google Scholar 

  • de Carlos JA, O’Leary DDM (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12:1194–1211

    PubMed  Google Scholar 

  • De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302

    PubMed  PubMed Central  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    PubMed  PubMed Central  Google Scholar 

  • de Souza FSJ, Niehrs C (2000) Anterior endoderm and head induction in early vertebrate embryos. Cell Tissue Res 300:207–217

    PubMed  Google Scholar 

  • Demyanenko GP, Tsai AY, Maness PF (1999) Abnormalities in neural process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 19:4907–4920

    CAS  PubMed  Google Scholar 

  • Demyanenko GP, Riday TT, Tan TS, Dalal J, Darnell EP, Brennaman LH et al (2011a) NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and discrupts visual acuity. J Neurosci 31:1545–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demyanenko GP, Siesser PF, Wright AG, Brennaman LH, Bartsch U, Schachner M, Maness PF (2011b) L1 and CHL1 cooperate in thalamocortical axon targeting. Cereb Cortex 21:401–412

    PubMed  PubMed Central  Google Scholar 

  • Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503

    CAS  PubMed  Google Scholar 

  • Díaz C, Glover JC (2002) Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations. Brain Res Bull 57:307–312

    PubMed  Google Scholar 

  • Díaz C, Puelles L, Marín F, Glover JC (1998) The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras. Dev Biol 202:14–28

    PubMed  Google Scholar 

  • Dickinson ME, Selleck MA, McMahon AP, Bronner-Fraser M (1995) Dorsalization of the neural tube by the non-neural ectoderm. Development 121:2099–2106

    CAS  PubMed  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular comparison in three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  • Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • Donahoo A-LS, Richards LJ (2009) Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 16:127–142

    PubMed  Google Scholar 

  • Dorey K, Amaya E (2010) FGF signalling: diverse roles during early vertebrate embryogenesis. Development 137:3731–3742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dou CL, Li S, Lai E (1999) Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb Cortex 9:543–550

    CAS  PubMed  Google Scholar 

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370

    CAS  PubMed  Google Scholar 

  • Driever W (1999) Introduction to the zebrafish. In: Moody SA (ed) Cell lineage and fate determination. Academic, San Diego, pp 383–398

    Google Scholar 

  • Duan X, Kang E, Liu CY, G-l M, Song H (2008) Development of neural stem cells in the adult brain. Curr Opin Neurobiol 18:108–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupé V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128:2199–2208

    PubMed  Google Scholar 

  • Dupé V, Ghyselinck NB, Wendling O, Chambon P, Mark M (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126:5051–5059

    PubMed  Google Scholar 

  • Durston AJ, Timmermans JPM, Hage WJ, Hendricks HFJ, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–147

    CAS  PubMed  Google Scholar 

  • Eagleson GW, Harris WA (1990) Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J Neurobiol 21:427–440

    CAS  PubMed  Google Scholar 

  • Eagleson GW, Ferreiro B, Harris WA (1995) Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. J Neurobiol 28:146–158

    CAS  PubMed  Google Scholar 

  • Easter SS Jr, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  • Easter SS Jr, Burrill J, Marcus RC, Ross LS, Taylor JSH, Wilson SW (1994) Initial tract formation in the vertebrate brain. Prog Brain Res 102:79–93

    PubMed  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    CAS  PubMed  Google Scholar 

  • Edelman GM (1983) Cell adhesion molecules. Science 219:450–457

    CAS  PubMed  Google Scholar 

  • Eisen JS, Myers PZ, Westerfield M (1986) Pathway selection by growth cones of identified motoneurones in live zebrafish embryos. Nature 320:269–271

    CAS  PubMed  Google Scholar 

  • Eisen JS, Pike SH, Debu B (1989) The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron 2:1097–1104

    CAS  PubMed  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    CAS  PubMed  Google Scholar 

  • Ellis HM, Yuan JY, Horvitz HR (1991) Mechanisms and function of cell death. Annu Rev Cell Biol 7:663–698

    CAS  PubMed  Google Scholar 

  • Emery B (2010) Transcriptional and post-transcriptional control of CNS myelination. Curr Opin Neurobiol 20:601–607

    CAS  PubMed  Google Scholar 

  • Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  Google Scholar 

  • Ernst M (1926) Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Z Anat Entw Gesch 79:228–262

    Google Scholar 

  • Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54

    Google Scholar 

  • Evans TA, Bashaw GJ (2010) Axon guidance at the midline: of mice and flies. Curr Opin Neurobiol 20:79–85

    CAS  PubMed  Google Scholar 

  • Fancy SPJ, Chan JR, Baranzini SE, Franklin RJM, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    CAS  PubMed  Google Scholar 

  • Favier B, Dollé P (1997) Developmental functions of mammalian Hox genes. Mol Hum Reprod 3:115–131

    CAS  PubMed  Google Scholar 

  • Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG et al (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386:796–804

    CAS  PubMed  Google Scholar 

  • Feldheim DA, Kim YI, Bergemann AD, Frisén J, Barbacid M, Flanagan JG (2000) Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in the multiple aspects of retinocollicular mapping. Neuron 25:563–574

    CAS  PubMed  Google Scholar 

  • Feliciano DM, Bordey A (2013) Newborn cortical neurons: only for neonates? Trends Neurosci 36:51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin-1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 22:10346–10356

    CAS  PubMed  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    CAS  PubMed  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345

    CAS  PubMed  Google Scholar 

  • Foley AC, Skromne IS, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127:3839–3854

    CAS  PubMed  Google Scholar 

  • Fraser SE (1999) Cell interactions and morphogenetic motions pattern the zebrafish nervous system. In: Moody SA (ed) Cell lineage and fate determination. Academic, San Diego, pp 371–382

    Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    CAS  PubMed  Google Scholar 

  • Frisén J, Yates PA, McLaughlin T, Friedman GC, O’Leary DDM, Barbacid M (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20:235–243

    PubMed  Google Scholar 

  • Fujimori KE, Takeuchi K, Yazaki T, Uyemura K, Nojyo Y, Tamamaki N (2000) Expression of L1 and TAG-1 in the corticospinal, callosal, and hippocampal commissural neurons in the developing rat telencephalon as revealed by retrograde and in situ hybridization double labeling. J Comp Neurol 417:275–288

    CAS  PubMed  Google Scholar 

  • Fujita S (1963) The matrix cell and cytogenesis in the developing central nervous system. J Comp Neurol 120:37–42

    CAS  PubMed  Google Scholar 

  • Fujita S (1966) Application of light and electron microscopic autoradiography in the study of cytogenesis of the forebrain. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme, Stuttgart, pp 180–196

    Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074

    CAS  PubMed  Google Scholar 

  • Gabreëls-Festen AAWM, Bolhuis PA, Hoogendijk JE, Valentijn LJ, Eshuis EJHM, Gabreëls FJM (1995) Charcot-Marie-Tooth disease type 1A: morphological phenotype of the 17p duplication versus PMP22 point mutations. Acta Neuropathol (Berl) 90:645–649

    Google Scholar 

  • Gabreëls-Festen AAWM, Hoogendijk JE, Meijerink PHS, Gabreëls FJM, Bolhuis PA, van Beersum S et al (1996) Two different types of nerve pathology in patients with different P0 mutations in Charcot-Marie-Tooth disease. Neurology 47:761–765

    PubMed  Google Scholar 

  • Gaiano N, Fishell G (2002) The role of Notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490

    CAS  PubMed  Google Scholar 

  • Gavalas A (2002) ArRAnging the hindbrain. Trends Neurosci 25:61–64

    CAS  PubMed  Google Scholar 

  • Gavalas A, Krumlauf R (2000) Retinoid signalling and hindbrain patterning. Curr Opin Genet Dev 10:380–386

    CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    CAS  PubMed  Google Scholar 

  • Gibson DA, Ma L (2011) Developmental regulation of axon branching in the vertebrate nervous system. Development 138:183–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert SF (2010) Developmental biology, 9th edn. Sinauer, Sunderland

    Google Scholar 

  • Gimlich RL, Cooke J (1983) Cell lineage and the induction of second nervous systems in amphibian development. Nature 306:471–473

    CAS  PubMed  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan PA, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    CAS  PubMed  Google Scholar 

  • Globus JH, Kuhlenbeck H (1944) Subependymal cell plate (matrix) and its relation to brain tumors of ependymal type. J Neuropathol 3:1–35

    Google Scholar 

  • Glover JC, Petursdottir G (1991) Regional specificity of developing reticulospinal, vestibulospinal, and vestibulo-ocular projections of the chicken embryo. J Neurobiol 22:353–376

    CAS  PubMed  Google Scholar 

  • Glücksmann A (1940) Development and differentiation of the tadpole eye. Br J Ophthalmol 24:153–178

    PubMed  PubMed Central  Google Scholar 

  • Glücksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59–86

    PubMed  Google Scholar 

  • Godement P, Mason CA (1993) Guidance of retinal fibers in the optic chiasm. Perspect Dev Neurobiol 1:217–225

    CAS  PubMed  Google Scholar 

  • Goodman CS (1982) Embryonic development of identified neurons in the grasshopper. In: Spitzer NC (ed) Neuronal development. Plenum, New York, pp 171–212

    Google Scholar 

  • Goodman CS (1996) Mechanisms and axon molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377

    CAS  PubMed  Google Scholar 

  • Goodman CS, Bate M (1983) Neuronal development of the grasshopper. Trends Neurosci 4:163–169

    Google Scholar 

  • Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1131–1206

    Google Scholar 

  • Goodman CS, Tessier-Lavigne M (1997) Molecular mechanisms of axon guidance and target recognition. In: Cowan WM, Jessell TM, Zipursky SL (eds) Molecular and cellular approaches to neural development. Oxford University Press, New York, pp 108–176

    Google Scholar 

  • Graham A, Smith A (2001) Patterning the pharyngeal arches. Bioessays 23:54–61

    CAS  PubMed  Google Scholar 

  • Griffiths IR (1996) Myelin mutants: model systems for the study of normal and abnormal myelination. Bioessays 18:789–797

    CAS  PubMed  Google Scholar 

  • Grunz H, Tacke L (1989) Neural differentiation of Xenopus laevis ectoderm takes place after disintegration and delayed reaggregation without inducer. Cell Diff Dev 28:211–217

    CAS  Google Scholar 

  • Guan K-L, Rao Y (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941–956

    CAS  PubMed  Google Scholar 

  • Guillemot F, Zimmer C (2011) From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 71:574–588

    CAS  PubMed  Google Scholar 

  • Guillery RW (1996) Why do albinos and other hypopigmented mutants lack normal binocular vision, and what else is abnormal in their central visual pathways. Eye 10:217–221

    PubMed  Google Scholar 

  • Guillery RW, Kaas JH (1971) A study of normal and congenitally abnormal retinogeniculate terminations in cats. J Comp Neurol 143:71–100

    Google Scholar 

  • Guthrie S (1996) Patterning the hindbrain. Curr Opin Neurobiol 6:41–48

    CAS  PubMed  Google Scholar 

  • Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112:221–229

    CAS  PubMed  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352

    CAS  PubMed  Google Scholar 

  • Hanemann CO, Müller HW (1998) Pathogenesis of Charcot-Marie-Tooth 1A (CMT1A) neuropathy. Trends Neurosci 21:282–286

    CAS  PubMed  Google Scholar 

  • Harding AE (1995) From the syndrome of Charcot, Marie and Tooth to disorders of peripheral myelin proteins. Brain 118:809–818

    PubMed  Google Scholar 

  • Harkmark W (1954) Cell migration from the rhombic lip to the inferior olive, the nucleus raphe and the pons. A morphological and experimental investigation on chick embryos. J Comp Neurol 100:115–210

    CAS  PubMed  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667

    CAS  PubMed  Google Scholar 

  • Harrison RG (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movements. J Exp Zool 9:787–846

    Google Scholar 

  • Hartenstein V (1989) Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron 3:399–411

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Nassif C, Lekven A (1998) Embryonic development of the Drosophila brain. II. Pattern of glial cells. J Comp Neurol 402:32–47

    CAS  PubMed  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    CAS  PubMed  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408

    CAS  PubMed  Google Scholar 

  • Hayasaka K, Himoro M, Sato W, Takada G, Uyemura K, Shimizu N et al (1993) Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet 5:31–34

    CAS  PubMed  Google Scholar 

  • Hayashi M (1924) Einige wichtige Tatsachen aus der ontogenetischen Entwicklung des menschlichen Kleinhirns. Dtsch Z Nervenheilkd 81:74–82

    Google Scholar 

  • Haydar TF, Kuan C-Y, Flavell RA, Rakic P (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb Cortex 9:621–626

    CAS  PubMed  Google Scholar 

  • He W, Ingraham C, Rising L, Goderie S, Temple S (2001) Multipotent stem cells from the basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during development. J Neurosci 21:8854–8863

    CAS  PubMed  Google Scholar 

  • Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003) FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130:1101–1111

    PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359:609–614

    CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88:13–17

    CAS  PubMed  Google Scholar 

  • Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1937) Development of the brain of Amblystoma in early functional stages. J Comp Neurol 67:381–422

    Google Scholar 

  • Herrick CJ (1938) Development of the brain of Amblystoma during early swimming stages. J Comp Neurol 68:203–241

    Google Scholar 

  • Hindges R, McLaughlin T, Geroud N, Henkemeyer M, O’Leary DDM (2002) EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35:475–487

    CAS  PubMed  Google Scholar 

  • Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115:226–264

    CAS  PubMed  Google Scholar 

  • Hirano M, Goldmann JE (1988) Gliogenesis in rat spinal cord: evidence of origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167

    CAS  PubMed  Google Scholar 

  • Hirose G, Jacobson M (1979) Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev Biol 71:191–202

    CAS  PubMed  Google Scholar 

  • Hirth F, Hartmann B, Reichert H (1998) Homeotic gene action in embryonic brain development of Drosophila. Development 125:1579–1589

    CAS  PubMed  Google Scholar 

  • His W (1888) Zur Geschichte des Gehirns sowie der centralen und peripherischen Nervenbahnen beim menschlichen Embryo. Abh Kön Sächs Ges Wiss Math Phys Kl 14:339–393

    Google Scholar 

  • His W (1889) Die Neuroblasten und deren Entstehung im embryonalen Mark. Abh Kön Sächs Ges Wiss Math Phys Kl 15:313–372

    Google Scholar 

  • His W (1890) Die Entwickelung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. Abh Kön Sächs Ges Wiss Math Phys Kl 17:1–74

    Google Scholar 

  • Holt CE, Harris WA (1993) Position, guidance, and mapping in the developing visual system. J Neurobiol 24:1400–1422

    CAS  PubMed  Google Scholar 

  • Holtfreter J (1938) Differenzierungspotenzen isolierter Teile der Urodelengastrula. Roux Arch Entw Mech Org 138:522–656

    Google Scholar 

  • Houart C, Westerfield M, Wilson SW (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391:788–792

    CAS  PubMed  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C-P, Take-Uchi M, Wilson SW (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35:255–265

    CAS  PubMed  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AF (1957) The development of the primary sensory system in Xenopus laevis (Daudin). J Anat (Lond) 91:323–338

    CAS  Google Scholar 

  • Hughes AF (1961) Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin). J Embryol Exp Morphol 9:269–284

    CAS  PubMed  Google Scholar 

  • Huppertz B, Frank H-G, Kaufmann P (1999) The apoptosis cascade – morphological and immunohistochemical methods for its visualization. Anat Embryol (Berl) 200:1–18

    CAS  Google Scholar 

  • Hutson LD, Chien C-B (2002) Wiring the zebrafish: axon guidance and synaptogenesis. Curr Opin Neurobiol 12:87–92

    CAS  PubMed  Google Scholar 

  • Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383

    CAS  PubMed  Google Scholar 

  • Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–186

    CAS  PubMed  Google Scholar 

  • Itoh K, Tang TL, Neel BG, Sokol SY (1995) Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 121:3979–3988

    CAS  PubMed  Google Scholar 

  • Itoh K, Suzuki K, Bise K, Itoh H, Mehraein P, Weis S (2001) Apoptosis in the basal ganglia of the developing human nervous system. Acta Neuropathol (Berl) 101:92–100

    CAS  Google Scholar 

  • Izzi L, Charron F (2011) Midline axon guidance and human genetic disorders. Clin Genet 80:226–234

    CAS  PubMed  Google Scholar 

  • Jacobs JR, Goodman CS (1989) Embryonic development of axon pathways in the Drosophila CNS. I. A glial scaffold appears before the first growth cones. J Neurosci 9:2402–2411

    CAS  PubMed  Google Scholar 

  • Jacobson M (1982) Origins of the nervous system in amphibians. In: Spitzer NC (ed) Neuronal development. Plenum, New York, pp 45–99

    Google Scholar 

  • Jacobson M (1983) Clonal organization of the central nervous system of the frog. III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages. J Neurosci 3:1019–1038

    CAS  PubMed  Google Scholar 

  • Jacobson M (1985) Clonal analysis and cell lineages of the vertebrate central nervous system. Annu Rev Neurosci 8:71–102

    CAS  PubMed  Google Scholar 

  • Jacobson M (1991) Developmental neurobiology, 3rd edn. Plenum, New York

    Google Scholar 

  • Jacobson M, Hirose G (1981) Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages. J Neurosci 1:271–284

    CAS  PubMed  Google Scholar 

  • Jacobson M, Huang S (1985) Neurite outgrowth traced by means of horseradish peroxidase inherited from neuronal ancestral cells in frog embryos. Dev Biol 110:102–113

    CAS  PubMed  Google Scholar 

  • Jacobson M, Moody SA (1984) Quantitative lineage analysis of the frog’s nervous system. I. Lineages of Rohon-Beard neurons and primary motoneurons. J Neurosci 4:1361–1369

    CAS  PubMed  Google Scholar 

  • Jacobson MD, Weil M, Raff RC (1996) Role of Ced-3/ICE family proteases in staurosporine-induced programmed cell death. J Cell Biol 133:1041–1051

    CAS  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Neuron 88:347–354

    CAS  Google Scholar 

  • Jessell TM, Sanes JR (2000) Development – the decade of the developing brain. Curr Opin Neurobiol 10:599–601

    CAS  PubMed  Google Scholar 

  • Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisén J (1999) Neural stem cells in the adult human brain. Exp Cell Res 253:733–736

    CAS  PubMed  Google Scholar 

  • Johansson PA, Cappello S, Götz M (2010) Stem cells niches during development – lessons from the cerebral cortex. Curr Opin Neurobiol 20:400–407

    CAS  PubMed  Google Scholar 

  • Johnson KG, Harris WA (2000) Connecting the eye with the brain: the formation of the retinotectal pathway. In: Fini ME (ed) Vertebrate eye development. Springer, Berlin/Heidelberg/New York, pp 157–177

    Google Scholar 

  • Joosten EAJ, Gribnau AAM, Gorgels TGMF (1990) Immunoelectron microscopic localization of cell adhesion molecule L1 in developing rat pyramidal tract. Neuroscience 38:675–686

    CAS  PubMed  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20

    CAS  PubMed  Google Scholar 

  • Joyner AL (2002) Establishment of anterior-posterior and dorsal-ventral pattern in the early central nervous system. In: Rossant J, Tam PPL (eds) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 107–126

    Google Scholar 

  • Kaas JH, Catania KC (2002) How do features of sensory representations develop? Bioessays 24:334–343

    PubMed  Google Scholar 

  • Kahle W (1951) Studien über die Matrixphasen und die örtliche Reifungsunterschiede im embryonalen menschlichen Gehirn. Dtsch Z Nervenheilkd 166:273–302

    CAS  PubMed  Google Scholar 

  • Källén B (1951a) Contributions to the ontogeny of the nuclei and the ventricular sulci in the vertebrate forebrain. Kgl Fysiogr Sällsk Lund Handl NF 62: Nr 3

    Google Scholar 

  • Källén B (1951b) Embryological studies on the nuclei and their homologization in the vertebrate forebrain. Kgl Fysiogr Sällsk Lund Handl NF 62: Nr 5

    Google Scholar 

  • Kamiguchi H, Hlavin ML, Yamasaki M, Lemmon V (1998) Adhesion molecules and inherited diseases of the human nervous system. Annu Rev Neurosci 21:97–125

    CAS  PubMed  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    CAS  PubMed  Google Scholar 

  • Kaprielian Z, Runko E, Imondi R (2001) Axon guidance at the midline choice point. Dev Dyn 221:154–181

    CAS  PubMed  Google Scholar 

  • Karlstrom RO, Trowe T, Bonhoeffer F (1997) Genetic analysis of axon guidance and mapping in the zebrafish. Trends Neurosci 20:3–8

    CAS  PubMed  Google Scholar 

  • Kay BK, Peng HB (eds) (1991) Xenopus laevis: practical uses in cell and molecular biology, vol 36, Methods in cell biology. Academic, San Diego

    Google Scholar 

  • Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SSY, Culotti JG, Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receotor. Cell 87:175–195

    CAS  PubMed  Google Scholar 

  • Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42:222–241

    CAS  PubMed  Google Scholar 

  • Keller RE (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layers. Dev Biol 51:118–137

    CAS  PubMed  Google Scholar 

  • Keller R, Shih J, Wilson P (1991) Cell motility, control and function of convergence and extension during gastrulation of Xenopus. In: Keller R, Clark W, Griffin F (eds) Gastrulation: movements, patterns, and molecules. Plenum, New York, pp 101–119

    Google Scholar 

  • Keller R, Poznanski A, Elul T (1999) Experimental embryological methods for analysis of neural induction in the amphibian. In: Sharpe PI, Mason I (eds) Molecular embryology: methods and protocols, vol 97, Methods in molecular biology. Humana, Totowa, pp 351–392

    Google Scholar 

  • Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotrophic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    CAS  PubMed  Google Scholar 

  • Kennedy TE, Wang H, Marshall W, Tessier-Lavigne M (2006) Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. J Neurosci 26:8866–8874

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JFR, Gobé GC, Winterford CM, Harman BV (1995) Anatomical methods in cell death. Meth Cell Biol 46:1–27

    CAS  Google Scholar 

  • Kershman J (1938) The medulloblast and the medulloblastoma. Arch Neurol Psychiatr 40:937–967

    Google Scholar 

  • Kessler DS (1999) Maternal signaling pathways and the regulation of cell fate. In: Moody SA (ed) Cell lineage and fate determination. Academic, San Diego, pp 323–340

    Google Scholar 

  • Keyser AJM (1972) The development of the diencephalon of the Chinese hamster. Acta Anat (Basel) 83(Suppl 59):1–181

    Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS (1998) Roundabout controls axon crossing of the CNS midline and defines a new subfamily of evolutionary conserved guidance receptors. Cell 92:205–215

    CAS  PubMed  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    CAS  PubMed  Google Scholar 

  • Kiecker C, Lumsden A (2012) The role of organizers in patterning the nervous system. Annu Rev Neurosci 35:347–367

    CAS  PubMed  Google Scholar 

  • Kiecker C, Niehrs C (2001) The role of prechordal mesendoderm in neural patterning. Curr Opin Neurobiol 11:27–33

    CAS  PubMed  Google Scholar 

  • Killackey HP, Rhoades RW, Bennett-Clarke CA (1995) The formation of a cortical somatotopic map. Trends Neurosci 18:402–407

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Sepich DS, Trevarrow B (1988) Development of segmentation in zebrafish. Development 104(Suppl):197–207

    PubMed  Google Scholar 

  • Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108:581–594

    CAS  PubMed  Google Scholar 

  • Kimura S, Shiota K (1996) Sequential changes of programmed cell death in developing fetal mouse limbs and its morphogenesis. J Morphol 229:337–346

    CAS  PubMed  Google Scholar 

  • Kimura M, Inoko H, Katsuki M, Ando A, Sato T, Hirose T et al (1985) Molecular genetic analysis of myelin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein. J Neurochem 44:692–696

    CAS  PubMed  Google Scholar 

  • Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321

    CAS  PubMed  Google Scholar 

  • Kitamura K, Miura H, Yanazawa M, Miyashita T, Kato K (1997) Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech Dev 67:83–96

    CAS  PubMed  Google Scholar 

  • Klugmann M, Schwab MH, Pühlhofer A, Schneider A, Zimmermann F, Griffiths IR, Nave K-A (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 19:205–218

    Google Scholar 

  • Knöll B, Drescher U (2002) Ephrin-As as receptors in topographic projections. Trends Neurosci 25:145–149

    PubMed  Google Scholar 

  • Koeppen AH, Robitaille Y (2002) Pelizaeus-Merzbacher disease. J Neuropathol Exp Neurol 61:747–759

    PubMed  Google Scholar 

  • Koeppen AH, Ronca NA, Greenfield EA, Hans MB (1987) Defective biosynthesis of proteolipid protein in Pelizaeus-Merzbacher disease. Ann Neurol 21:159–170

    CAS  PubMed  Google Scholar 

  • Koeppen AH, Barron KD, Csiza CK, Greenfield EA (1988) Comparative immunocytochemistry of Pelizaeus-Merzbacher disease, the jimpy mouse, and the myelin-deficient rat. J Neurol Sci 84:315–327

    CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DDM (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14:6608–6620

    CAS  PubMed  Google Scholar 

  • Kolodkin AL (1996) Growth cones and the cues that repel them. Trends Neurosci 19:507–513

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768–5773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein AR, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399

    CAS  PubMed  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    CAS  PubMed  Google Scholar 

  • Kuan C-Y, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676

    CAS  PubMed  Google Scholar 

  • Kuan C-Y, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297

    CAS  PubMed  Google Scholar 

  • Kuemerle B, Zanjani H, Joyner A, Herrup K (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 17:7881–7889

    CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C-Y, Yang D, Karasuyama H et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan C-Y, Gu Y, Taya C, Karasuyama H, Su MS et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337

    CAS  PubMed  Google Scholar 

  • Lamborghini JE (1987) Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J Comp Neurol 264:47–55

    CAS  PubMed  Google Scholar 

  • LaMonica BE, Lui JH, Wang X, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr Opin Neurobiol 22:747–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lance-Jones C, Landmesser L (1981a) Pathway selection by chick lumbosacral motoneurones during normal development. Proc R Soc Lond B 214:1–18

    CAS  PubMed  Google Scholar 

  • Lance-Jones C, Landmesser L (1981b) Pathway selection by embryonic chick motoneurones in an experimentally altered environment. Proc R Soc Lond B 214:19–52

    CAS  PubMed  Google Scholar 

  • Landmesser LT (1978) The development of motor projection patterns in the chick hind limb. J Physiol (Lond) 284:391–414

    CAS  Google Scholar 

  • Lawrence PA (1992) The making of a fly. Blackwell, Oxford

    Google Scholar 

  • Le Douarin N (1973) A biological cell labeling technique and its use in experimental embryology. Dev Biol 30:217–222

    PubMed  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Leber SM, Sanes JR (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J Neurosci 15:1236–1248

    CAS  PubMed  Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    CAS  PubMed  Google Scholar 

  • Lee JC, Mayer-Proschel M, Rao MS (2000) Gliogenesis in the central nervous system. Glia 30:105–121

    CAS  PubMed  Google Scholar 

  • Lemke G (1993) The molecular genetics of myelination: an update. Glia 7:263–271

    CAS  PubMed  Google Scholar 

  • Lemke G (2001) Glial control of neuronal development. Annu Rev Neurosci 24:87–105

    CAS  PubMed  Google Scholar 

  • Lent R, Uziel D, Baudrimont M, Fallet C (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483:375–382

    PubMed  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840

    CAS  PubMed  Google Scholar 

  • Lewis PD, Lai M (1974) Cell generation in the subependymal layer of the rat brain during the early postnatal period. Brain Res 77:520–525

    Google Scholar 

  • Leyns L, Bouwmeester T, Kim S-H, Piccolo S, De Robertis EM (1997) Frzβ-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liem KF, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    CAS  PubMed  Google Scholar 

  • Lindwall C, Fothergill T, Richards LJ (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17:3–14

    CAS  PubMed  Google Scholar 

  • Litingtung Y, Chiang C (2000) Control of Shh activity and signaling in the neural tube. Dev Dyn 219:143–154

    CAS  PubMed  Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896

    CAS  PubMed  Google Scholar 

  • Lo AC, Houenou LJ, Oppenheim RW (1995) Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch Histol Cytol 58:139–149

    CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    CAS  PubMed  Google Scholar 

  • López-Bendito G, Molnár Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289

    PubMed  Google Scholar 

  • López-Bendito G, Cautinat A, Sánchez JA, Bielle F, Flames N, Garratt AN et al (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125:127–142

    PubMed  PubMed Central  Google Scholar 

  • López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chédotal A et al (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27:3395–3407

    PubMed  Google Scholar 

  • Lu CC, Brennan J, Robertson EJ (2001) From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 11:384–392

    CAS  PubMed  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M et al (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86

    CAS  PubMed  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    CAS  PubMed  Google Scholar 

  • Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech Dev 121:1081–1088

    CAS  PubMed  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    CAS  PubMed  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    CAS  PubMed  Google Scholar 

  • Lumsden A, Sprawson N, Graham A (1991) Segmental origin and migration of neural crest cells in the hindbrain region of a chick embryo. Development 113:1281–1291

    CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    CAS  PubMed  Google Scholar 

  • Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3:843–853

    CAS  PubMed  Google Scholar 

  • Magini G (1888) Ulteriori richerche istologiche sul cervello fetale. Rendiconti della R Accademia dei Lincei 4:760–763 (quoted from Fishell and Kriegstein 2003)

    Google Scholar 

  • Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neural migration. Nat Neurosci 10:19–26

    CAS  PubMed  Google Scholar 

  • Mangold O (1933) Über die Induktionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21:761–766

    Google Scholar 

  • Mann F, Ray S, Harris W, Holt C (2002) Topographic mapping in dorsoventral axis of Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35:461–473

    CAS  PubMed  Google Scholar 

  • Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, Tessier-Lavigne M, Chédotal A (2004) The Slit receptor Rig1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43:69–79

    CAS  PubMed  Google Scholar 

  • Marín F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    PubMed  Google Scholar 

  • Marín O, Rubinstein JLR (2002) Patterning, regionalization, and cell differentiation in the forebrain. In: Rossant J, Tam PPL (eds) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 75–106

    Google Scholar 

  • Marín O, Baker J, Puelles L, Rubinstein JLR (2002) Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129:761–773

    PubMed  Google Scholar 

  • Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    PubMed  Google Scholar 

  • Marti E, Bovolenta P (2002) Sonic hedgehog in cell development: one signal, multiple outputs. Trends Neurosci 25:89–96

    CAS  PubMed  Google Scholar 

  • Martínez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene En. Neuron 6:971–981

    PubMed  Google Scholar 

  • Martínez S, Marín F, Nieto MA, Puelles L (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: Intersegmental boundaries as barriers. Mech Dev 51:289–303

    PubMed  Google Scholar 

  • Martínez S, Puelles E, Puelles L, Echevarria D (2012) Molecular regionalization of the developing neural tube. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 2–18

    Google Scholar 

  • Mason CA, Sretavan DW (1997) Glia, neurons, and axon pathfinding during optic chiasm development. Curr Opin Neurobiol 7:647–653

    CAS  PubMed  Google Scholar 

  • Mason CA, Marcus RC, Wang LC (1996) Retinal axon divergence in the optic chiasm: growth cone behaviors and signalling cells. Prog Brain Res 108:95–107

    CAS  PubMed  Google Scholar 

  • Mastick GS, Fan C-M, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early detection of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    CAS  PubMed  Google Scholar 

  • McConnell SK (1995) Strategies for the generation of neuronal diversity in the developing central nervous system. J Neurosci 15:6987–6998

    CAS  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982

    CAS  PubMed  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1994) Subplate pioneers and the formation of descending connections from cerebral cortex. J Neurosci 14:1892–1907

    CAS  PubMed  Google Scholar 

  • McLaughlin T, O’Leary DDM (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    CAS  PubMed  Google Scholar 

  • McLaughlin T, Hindges R, O’Leary DDM (2003) Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr Opin Neurobiol 13:57–69

    CAS  PubMed  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    CAS  PubMed  Google Scholar 

  • Mehler MF, Mabie PC, Zhang D, Kessler JA (1997) Bone morphogenetic proteins in the nervous system. Trends Neurosci 20:309–317

    CAS  PubMed  Google Scholar 

  • Meller K, Tetzlaff W (1975) Neuronal migration during the early development of the cerebral cortex – a scanning electron microscopic study. Cell Tissue Res 163:313–325

    CAS  PubMed  Google Scholar 

  • Métin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 16:3219–3235

    PubMed  Google Scholar 

  • Métin C, Deléglise D, Serafini T, Kennedy TE, Tessier-Lavigne M (1997) A role for netrin-1 in the guidance of cortical effenets. Development 12:5063–5074

    Google Scholar 

  • Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–414

    CAS  PubMed  Google Scholar 

  • Millen KJ, Wurst W, Herrup K, Joyner AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706

    CAS  PubMed  Google Scholar 

  • Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19:92–96

    CAS  PubMed  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    CAS  PubMed  Google Scholar 

  • Miller RH, Ono K (1998) Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc Res Tech 41:441–453

    CAS  PubMed  Google Scholar 

  • Ming G-I, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misson J-P, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr (1991) The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb Cortex 1:221–229

    CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    CAS  PubMed  Google Scholar 

  • Moens CB, Prince VE (2002) Constructing the hindbrain: insights from the zebrafish. Dev Dyn 224:1–17

    PubMed  Google Scholar 

  • Molnár Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397

    PubMed  Google Scholar 

  • Molnár Z, Blakemore C (1999) Development of signals influencing the growth and termination of thalamocortical axons in organotypic culture. Exp Neurol 156:363–393

    PubMed  Google Scholar 

  • Molnár Z, Cordery P (1999) Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. J Comp Neurol 413:1–25

    PubMed  Google Scholar 

  • Molnár Z, Hannan AJ (2000) Development of thalamocortical projections in normal and mutant mice. In: Goffinet AM, Rakic P (eds) Mouse brain development. Springer, Berlin/Heidelberg/New York, pp 293–332

    Google Scholar 

  • Molnár Z, Adams R, Blakemore C (1998a) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745

    PubMed  Google Scholar 

  • Molnár Z, Adams R, Goffinet AM, Blakemore C (1998b) The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci 18:5746–5765

    PubMed  Google Scholar 

  • Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ (2012) Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 35:1573–1585

    PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Fame RM, MacDonald JL, MacQuarrie KL, Macklis JD (2009) Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J Neurosci 29:12343–12354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moody SA (1987a) Fates of the blastomeres of the 16-cell Xenopus embryo. Dev Biol 119:560–578

    CAS  PubMed  Google Scholar 

  • Moody SA (1987b) Fates of the blastomeres of the 32-cell Xenopus embryo. Dev Biol 122:300–319

    CAS  PubMed  Google Scholar 

  • Moody SA (1989) Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres. J Neurosci 9:2919–2930

    CAS  PubMed  Google Scholar 

  • Moody SA, Kline MJ (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat Embryol (Berl) 182:347–362

    CAS  Google Scholar 

  • Morest DK (1970) A study of neurogenesis in the forebrain of opossum pouch young. Z Anat Entw Gesch 130:265–305

    CAS  Google Scholar 

  • Mori C, Nakamura N, Okamoto Y, Osawa M, Shiota K (1994) Cytochemical identification of programmed cell death in the fusing fetal mouse palate by specific labelling of DNA fragmentation. Anat Embryol (Berl) 190:21–28

    CAS  Google Scholar 

  • Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K (1995) Programmed cell death in the interdigital tissue of fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 242:103–110

    CAS  PubMed  Google Scholar 

  • Morriss-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131

    CAS  PubMed  Google Scholar 

  • Mu Y, Lee SW, Gage FH (2010) Signaling in adult neurogenesis. Curr Opin Neurobiol 20:416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    CAS  PubMed  Google Scholar 

  • Mullen RJ, Hamre KM, Goldowitz D (1997) Cerebellar mutant mice and chimeras revisited. Persp Dev Neurobiol 5:43–55

    CAS  Google Scholar 

  • Muñoz-Sanjuán I, Hemmati-Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Neurosci Rev 3:271–280

    Google Scholar 

  • Nadarajah B, Alifragis P, Wong RO, Parnavelas JG (2002) Ventricle-directed migration in the developing cerebral cortex. A novel method of labeling and characterizing migrating neurons in the developing central nervous system. Nat Neurosci 5:218–224

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Shimogori T (2012) Diversity of thalamic progenitor cells and postmitotic neurons. Eur J Neurosci 35:1554–1562

    PubMed  Google Scholar 

  • Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris WA, Holt CE (2000) Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25:599–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H (2001) Regionalization of the optic tectum: combinations of gene expression that define the tectum. Trends Neurosci 24:32–39

    CAS  PubMed  Google Scholar 

  • Nassif C, Noveen A, Hartenstein V (1998) Embryonic development of the Drosophila brain. J Comp Neurol 402:10–31

    CAS  PubMed  Google Scholar 

  • Nave K-A, Bloom FE, Milner RJ (1987) A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in the mouse. J Neurochem 49:1873–1877

    CAS  PubMed  Google Scholar 

  • Nelis E, Haites N, Van Broeckhoven C (1999) Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mut 13:1–28

    Google Scholar 

  • Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540

    CAS  PubMed  Google Scholar 

  • Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434

    CAS  PubMed  Google Scholar 

  • Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857

    CAS  PubMed  Google Scholar 

  • Nieto MA, Gilardi HP, Charnay P, Wilkinson DG (1992) A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 116:1137–1150

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1998a) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 159–228

    Google Scholar 

  • Nieuwenhuys R (1998b) Histogenesis. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 229–271

    Google Scholar 

  • Nieuwkoop PD (1973) The “organisation center” of the amphibian embryo: its origin, spatial organisation and morphogenetic action. Adv Morphogenet 10:1–310

    CAS  Google Scholar 

  • Nieuwkoop PD (1977) Origin and establishment of embryonic polar axes in amphibian development. Curr Top Dev Biol 11:115–132

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Albers B (1990) The role of competence in the craniocaudal segregation of the central nervous system. Dev Growth Diff 32:23–31

    Google Scholar 

  • Nieuwkoop PD, Nigtevecht GV (1954) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J Embryol Exp Morphol 2:175–193

    Google Scholar 

  • Niquilla M, Garel S, Mann F et al (2009) Transient neuronal populations required to guide callosal axons: a role for semaphorin 3C. PLOS Biol 7:e1000230

    Google Scholar 

  • Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte-type-2 astrocyte progenitor cell. Nature 333:550–562

    Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Kriegstein AR (2007) Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol 64:639–642

    PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    PubMed  PubMed Central  Google Scholar 

  • Nüsslein-Volhard C, Fronhöfer C, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681

    PubMed  Google Scholar 

  • O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412

    PubMed  Google Scholar 

  • O’Leary DDM, Koester SE (1993) Development of projection neuron types, axon pathways, and patterned projections of the mammalian cortex. Neuron 10:991–1006

    PubMed  Google Scholar 

  • O’Leary DDM, Nakagawa Y (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12:14–25

    PubMed  Google Scholar 

  • O’Leary DDM, Bicknese AR, de Carlos JA, Heffner CD, Koester SE, Kutka LJ, Terashima T (1990) Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain. Cold Spring Harb Symp Quant Biol 55:453–480

    PubMed  Google Scholar 

  • O’Rourke NA (1996) Neuronal chain gangs: homotypic contacts support migration into the olfactory bulb. Neuron 16:1061–1064

    PubMed  Google Scholar 

  • Olivier C, Cobos I, Perez Villegas EM, Spassky N, Zalc B, Martinez S, Thomas J-L (2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128:1757–1769

    CAS  PubMed  Google Scholar 

  • Ono K, Kawamura K (1989) Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp Brain Res 78:290–300

    CAS  PubMed  Google Scholar 

  • Ono K, Kawamura K (1990) Mode of neuronal migration of the pontine stream in fetal mice. Anat Embryol (Berl) 182:11–19

    CAS  Google Scholar 

  • Ono K, Bansal R, Payne J, Rutishauser U, Miller RH (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121:1743–1754

    CAS  PubMed  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    CAS  PubMed  Google Scholar 

  • Oppenheimer JM (1936) Structures developed in amphibians by implantation of living fish organizer. Proc Soc Exp Biol Med 34:461–463

    Google Scholar 

  • Orioli D, Klein R (1997) The Eph receptor family: axonal guidance by contact repulsion. Trends Genet 13:354–359

    CAS  PubMed  Google Scholar 

  • Palka J (1982) Genetic manipulation of sensory pathways in Drosophila. In: Spitzer NC (ed) Neuronal development. Plenum, New York, pp 121–170

    Google Scholar 

  • Papalopulu N, Clarke JDW, Bradlet D, Wilkinson D, Krumlauf R, Holder N (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113:1145–1158

    CAS  PubMed  Google Scholar 

  • Pardee AB, Dubrow R, Hamlin JL, Kletzien RF (1978) Animal cell cycle. Annu Rev Biochem 47:715–750

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Nadarajah B (2001) Radial glial cells: are they really glia? Neuron 31:881–884

    CAS  PubMed  Google Scholar 

  • Pasini A, Wilkinson DG (2002) Stabilizing the regionalisation of the developing vertebrate central nervous system. Bioessays 24:427–438

    CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Kolodkin AL (2003) Semaphorin junction: making tracks towards neural connectivity. Curr Opin Neurobiol 13:79–89

    CAS  PubMed  Google Scholar 

  • Pera E, Kessell M (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124:4153–4162

    CAS  PubMed  Google Scholar 

  • Perea-Gómez A, Lawson KA, Rhinn M, Zakin L, Brûlet P, Mazan S, Ang SL (2001) Otx2 is required for visceral endoderm movement and for the restriction of posteriorizing signals in the epiblast of the mouse embryo. Development 128:753–765

    PubMed  Google Scholar 

  • Petros TJ, Rebsam A, Mason CA (2009) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315

    Google Scholar 

  • Petryniak MA, Potter GB, Rowitch DH, Rubinstein JLR (2007) Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55:417–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Placzek M (1995) The role of the notochord and floor plate in inductive interactions. Curr Opin Genet Dev 5:499–506

    CAS  PubMed  Google Scholar 

  • Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS et al (2002) Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232

    CAS  PubMed  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    CAS  PubMed  Google Scholar 

  • Polleux F, Giger RJ, Ginty DD, Kolodkin AL, Ghosh A (1998) Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282:1904–1906

    CAS  PubMed  Google Scholar 

  • Postlethwait JH, Talbot W (1997) Zebrafish genomics: from mutants to genes. Trends Genet 13:183–190

    CAS  PubMed  Google Scholar 

  • Prestige MC (1965) Cell turnover in the spinal ganglia of Xenopus laevis tadpoles. J Embryol Exp Morphol 13:63–72

    CAS  PubMed  Google Scholar 

  • Price DJ, Willshaw DJ (2000) Mechanisms of cortical development. Monographs of the physiological society, vol 48. Oxford University Press, Oxford

    Google Scholar 

  • Pringle NP, Yu W, Guthrie S, Roelink H, Lumsden A, Peterson AC, Richardson WD (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177:30–42

    CAS  PubMed  Google Scholar 

  • Pringle NP, Yu W-P, Howell M, Colvin JS, Ornitz DM, Richardson WD (2003) Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130:93–102

    CAS  PubMed  Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubinstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic forebrain suggests a neuromeric organization. Trends Neurosci 16:472–479

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubinstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    CAS  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J et al (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    CAS  PubMed  Google Scholar 

  • Puelles L, Martínez S, Martínez de la Torre M (2008) Neuroanatomía. Médica Panamericana, Buenos Aires/Madrid (in Spanish)

    Google Scholar 

  • Puelles L, Martínez-de-la-Torre M, Bardet S, Rubinstein JLR (2012a) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 221–312

    Google Scholar 

  • Puelles L, Martínez-de-la-Torre M, Ferran J-L, Watson C (2012b) Diencephalon. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 313–336

    Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson G (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:275–284

    Google Scholar 

  • Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K (2009) Netrin-1 dependent spinal interneuron suntypes are required for the formation of left-right alternating locomotor circuitry. J Neurosci 29:15642–15649

    CAS  PubMed  Google Scholar 

  • Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455

    CAS  PubMed  Google Scholar 

  • Raible F, Brand M (2004) Divide et Impera – the midbrain-hindbrain boundary and its organizer. Trends Neurosci 27:727–734

    CAS  PubMed  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    CAS  PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    CAS  PubMed  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systemic relation between time of origin and eventual disposition. Science 183:425–427

    CAS  PubMed  Google Scholar 

  • Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471

    CAS  PubMed  Google Scholar 

  • Rakic P (1981) Neuronal-glial interaction during brain development. Trends Neurosci 4:184–187

    Google Scholar 

  • Rakic P (1990) Principles of neural cell migration. Experientia 46:883–891

    Google Scholar 

  • Ramón y Cajal S (1890) A quelle époque apparaissent les expansions des cellules nerveuses de la moëlle épinière du poulet? Anat Anz 5:631–639

    Google Scholar 

  • Ramón y Cajal S (1909) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol I. Masson, Paris

    Google Scholar 

  • Raper JA (2000) Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 10:88–94

    CAS  PubMed  Google Scholar 

  • Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157

    CAS  PubMed  Google Scholar 

  • Readhead C, Popko B, Takahashi N, Shine HD, Saavedra RA, Sidman RL, Hood L (1987) Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48:703–712

    CAS  PubMed  Google Scholar 

  • Reichert H, Boyan G (1997) Building a brain: developmental insights in insects. Trends Neurosci 20:258–264

    CAS  PubMed  Google Scholar 

  • Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing fetal brain. Anat Rec 288:191–204

    Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain organizer. Curr Opin Neurobiol 11:34–42

    CAS  PubMed  Google Scholar 

  • Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139:843–858

    CAS  PubMed  Google Scholar 

  • Rice DS, Curran T (1999) Mutant mice with scrambled brains: understanding the signaling pathways that control cell positioning in the CNS. Genes Dev 13:2758–2773

    CAS  PubMed  Google Scholar 

  • Rice FL, Van der Loos H (1977) Development of the barrels and barrel fields in the somatosensory cortex of the mouse. J Comp Neurol 171:545–560

    CAS  PubMed  Google Scholar 

  • Richards LJ, Koester SE, Tuttle R, O’Leary DDM (1997) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17:2445–2458

    CAS  PubMed  Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    CAS  PubMed  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A et al (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    CAS  PubMed  Google Scholar 

  • Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81:445–455

    CAS  PubMed  Google Scholar 

  • Romanenko MJ, Rola R, Fike JR, Szele FG, Dizon MLV, Felling RJ et al (2004) Role of the mammalian subventricular zone in cell replacement after brain injury. Prog Neurobiol 74:77–99

    Google Scholar 

  • Rossant J, Tam PPL (eds) (2002) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego

    Google Scholar 

  • Rossant J, Tam PPL (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    CAS  PubMed  Google Scholar 

  • Rowitch DH, Lu QR, Kessaris N, Richardson WD (2002) An ‘oligarchy’ rules neural development. Trends Neurosci 25:417–422

    CAS  PubMed  Google Scholar 

  • Rubinstein JLR, Beachy PA (1998) Patterning of the embryonic forebrain. Curr Opin Neurobiol 8:18–26

    Google Scholar 

  • Rubinstein JLR, Shimamura K, Martínez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Google Scholar 

  • Ruggieri PM (1997) Metabolic and neurodegenerative disorders and disorders with abnormal myelination. In: Ball WS (ed) Pediatric neuroradiology. Lippincott, Philadelphia, pp 175–237

    Google Scholar 

  • Sabatier C, Plump AS, Ma L, Brose K, Tamada A, Murakami F et al (2004) The divergent Robo family protein Rig-1/Robo3 is a negative regulator of Slit responsiveness required for midline crossing by commissural axons. Cell 117:157–169

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    CAS  PubMed  Google Scholar 

  • Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822

    CAS  PubMed  Google Scholar 

  • Sanes JR (1989) Analysing cell lineage with a recombinant retrovirus. Trends Neurosci 12:21–28

    CAS  PubMed  Google Scholar 

  • Sanes JR, Jessell TM (2000) Guidance of axons to their targets. In: Kandel E, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 1063–1086

    Google Scholar 

  • Sanes JR, Yamagata M (1999) Formation of lamina-specific synaptic connections. Curr Opin Neurobiol 9:79–87

    CAS  PubMed  Google Scholar 

  • Sauer F (1935a) Mitosis in the neural tube. J Comp Neurol 62:377–407

    Google Scholar 

  • Sauer F (1935b) Cellular structure of the neural tube. J Comp Neurol 63:13–23

    Google Scholar 

  • Saxén L (1989) Neural induction. Int J Dev Biol 33:21–48

    PubMed  Google Scholar 

  • Saxén L, Toivonen S (1962) Primary embryonic induction. Logos, London

    Google Scholar 

  • Schaper A (1897a) Die frühesten Differenzierungsvorgänge im Centralnervensystem. Arch Entw-Mech Organ 5:81–132

    Google Scholar 

  • Schaper A (1897b) The earliest differentiation in the central nervous system of vertebrates. Science 5:430–431

    Google Scholar 

  • Schier AF (1997) Genetics of neural development in zebrafish. Curr Opin Neurobiol 7:119–126

    CAS  PubMed  Google Scholar 

  • Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11:393–404

    CAS  PubMed  Google Scholar 

  • Schier AF, Talbot WS (2005) Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39:561–613

    CAS  PubMed  Google Scholar 

  • Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156:115–152

    CAS  Google Scholar 

  • Scholpp S, Lumsden A (2010) Building a bridal chamber: development of the thalamus. Trends Neurosci 33:373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12:26–34

    CAS  PubMed  Google Scholar 

  • Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are non-permissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8:2381–2393

    CAS  PubMed  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    CAS  PubMed  Google Scholar 

  • Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    CAS  PubMed  Google Scholar 

  • Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001–1014

    CAS  PubMed  Google Scholar 

  • Shanmugalingam S, Houart C, Picker A, Reifers F, Macdonald R, Barth A et al (2000) Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127:2549–2561

    CAS  PubMed  Google Scholar 

  • Sharpe CR (1991) Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system. Neuron 7:239–247

    CAS  PubMed  Google Scholar 

  • Shimamura K, Rubinstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    CAS  PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubinstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121:3923–3933

    CAS  PubMed  Google Scholar 

  • Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21:2749–2758

    CAS  PubMed  Google Scholar 

  • Shu T, Li Y, Keller A, Richards LJ (2003a) The glial sling is a migratory population of developing neurons. Development 130:2929–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu T, Sundaresan V, McCarthy MM, Richards LJ (2003b) Slit2 guides both precrossing and postcrossing axons at the midline in vivo. J Neurosci 23:8176–8184

    CAS  PubMed  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain. Brain Res 62:1–35

    CAS  PubMed  Google Scholar 

  • Silver J (1993) Glia-neuron interactions at the midline of the developing mammalian brain and spinal cord. Perspect Dev Neurobiol 1:227–236

    CAS  PubMed  Google Scholar 

  • Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29

    CAS  PubMed  Google Scholar 

  • Skromne I, Stern CD (2001) Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128:2915–2927

    CAS  PubMed  Google Scholar 

  • Smart IHM (1961) The subependymal layer of the mouse brain and its cellular production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 116:325–349

    Google Scholar 

  • Smart IH (1976) A pilotstudy of cell production by the ganglionic eminences of the developing mouse brain. J Anat (Lond) 121:71–84

    CAS  Google Scholar 

  • Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey brain. Cereb Cortex 12:37–53

    PubMed  PubMed Central  Google Scholar 

  • Smith KM, Ohkubo Y, Maragnoli ME, Rasin MR, Schwartz ML, Sestan N, Vaccarino FM (2006) Midline radial glial translocation and corpus callosum formation require FGF signaling. Nat Neurosci 9:787–797

    CAS  PubMed  Google Scholar 

  • Snell JD (ed) (1941) Biology of the laboratory mouse. Dover, New York

    Google Scholar 

  • Sousa VH, Fishell G (2010) Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev 20:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S, Ivanova A et al (1998) Multiple restricted origins of oligodendrocytes. J Neurosci 18:8331–8343

    CAS  PubMed  Google Scholar 

  • Spassky N, Heydon K, Mangatal A, Jankovski A, Olivier C, Queraud-Lesaux F et al (2001) Sonic hedgehog-dependent emergence of oligodendrocytes in the telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGF2α signaling. Development 128:4993–5004

    CAS  PubMed  Google Scholar 

  • Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantation zwischen Triton cristatus und Triton taeniatus. Roux Arch Entw Mech Org 48:533–570

    Google Scholar 

  • Spemann H (1936) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven

    Google Scholar 

  • Spemann H, Mangold H (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Roux Arch Entw Mech Org 100:599–638

    Google Scholar 

  • Sperry RW (1943) Effects of 180 degree rotation of the retinal fields on visuomotor coordination. J Exp Zool 92:263–279

    Google Scholar 

  • Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fibre patterns and connections. Proc Natl Acad Sci U S A 50:703–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreafico R, Frassoni C, Arcelli P, Selvaggio M, de Biasi S (1995) In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. J Comp Neurol 363:281–295

    CAS  PubMed  Google Scholar 

  • Sretavan DW (1993) Pathfinding at the mammalian optic chiasm. Curr Opin Neurobiol 3:45–52

    CAS  PubMed  Google Scholar 

  • Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attaction by slit through a Robo/DCC receptor complex. Science 291:1928–1938

    CAS  PubMed  Google Scholar 

  • Stent GS, Weisblat DA (1985) Cell lineage in the development of invertebrate nervous systems. Annu Rev Neurosci 8:45–70

    CAS  PubMed  Google Scholar 

  • Stern CD (2001) Initial patterning of the central nervous system: how many organizers? Nat Rev Neurosci 2:92–98

    CAS  PubMed  Google Scholar 

  • Stern CD (2002) Induction and initial patterning of the nervous system – the chick embryo enters the scene. Curr Opin Genet Dev 12:447–451

    CAS  PubMed  Google Scholar 

  • Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021

    CAS  PubMed  Google Scholar 

  • Stern CD, Downs KM (2012) The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckli ET, Landmesser LT (1995) Axonin-1, NrCAM, and NgCAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14:1165–1179

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Landmesser LT (1998) Axon guidance at choice points. Curr Opin Neurobiol 8:73–79

    CAS  PubMed  Google Scholar 

  • Stoeckli ET, Sonderegger P, Pollerberg GE, Landmesser LT (1997) Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18:209–221

    CAS  PubMed  Google Scholar 

  • Storey KG, Crossley JM, De Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114:729–741

    CAS  PubMed  Google Scholar 

  • Storm R, Cholewa-Waclaw J, Reuter K, Bröhl D, Sieber M, Treier M et al (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    CAS  PubMed  Google Scholar 

  • Straka H, Baker R, Gilland E (2001) Rhombomeric organization of vestibular pathways in larval frogs. J Comp Neurol 437:42–55

    CAS  PubMed  Google Scholar 

  • Straka H, Baker R, Gilland E (2002) The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. Brain Res Bull 57:301–305

    PubMed  Google Scholar 

  • Streit A, Stern CD (1999) Neural induction – a bird’s eye view. Trends Genet 15:20–24

    CAS  PubMed  Google Scholar 

  • Sturrock RR (1982) Gliogenesis in the prenatal rabbit spinal cord. J Anat (Lond) 134:771–793

    CAS  Google Scholar 

  • Sturrock RR, Smart IHM (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat (Lond) 130:391–415

    CAS  Google Scholar 

  • Suetterlin P, Marler KM, Drescher U (2012) Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol 23:1–6

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Taniguchi M, Yagi T, Akagi Y, Nojyo Y (2001) Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 128:3321–3330

    CAS  PubMed  Google Scholar 

  • Sullivan SA, Moore KB, Moody SA (1999) Early events in frog blastomere fate determination. In: Moody SA (ed) Cell lineage and fate determination. Academic, San Diego, pp 297–321

    Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    CAS  PubMed  Google Scholar 

  • Sun KLW, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138:2153–2169

    CAS  Google Scholar 

  • Sussel L, Marín O, Kimura S, Rubinstein J (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  • Suter U, Snipes GJ (1995) Biology and genetics of hereditary motor and sensory neuropathies. Annu Rev Neurosci 18:45–75

    CAS  PubMed  Google Scholar 

  • Suter U, Welcher AA, Snipes GJ (1993) Progress in the molecular understanding of hereditary peripheral neuropathies reveals new insights into the biology of the peripheral nervous system. Trends Neurosci 16:50–56

    CAS  PubMed  Google Scholar 

  • Taber Pierce E (1966) Histogenesis of the nuclei griseum pontis, corporis pontobulbariss and reticularis tegmenti pontis (Bechterew) in the mouse. An autoradiographic study. J Comp Neurol 126:219–240

    Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068

    CAS  PubMed  Google Scholar 

  • Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3–23

    CAS  PubMed  Google Scholar 

  • Tam PPL, Steiner KA (1999) Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126:5171–5179

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274:1115–1123

    CAS  PubMed  Google Scholar 

  • Tear G, Harris R, Sutaria S, Kilomanski K, Goodman CS, Seeger MA (1996) Commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16:501–514

    CAS  PubMed  Google Scholar 

  • Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9:135–141

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (2000) Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach. Adv Anat Embryol Cell Biol 154:1–145

    Google Scholar 

  • Theiler K (1972) The house mouse – development and normal stages from fertilization to 4 weeks of age. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Therianos S, Leuzinger S, Hirth F, Goodman CS, Reichert H (1995) Embryonic development of the Drosophila brain: formation of commissural and descending pathways. Development 121:3849–3860

    CAS  PubMed  Google Scholar 

  • Thomaidou D, Mione MC, Cavanagh JFR, Parnavelas JC (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17:1075–1085

    CAS  PubMed  Google Scholar 

  • Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    CAS  PubMed  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207

    CAS  PubMed  Google Scholar 

  • Thomas PQ, Brown A, Beddington RSP (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    CAS  PubMed  Google Scholar 

  • Toivonen S, Saxén L (1955) The simultaneous inducing action of liver and bone marrow of the guinea pig in implantation and explantation experiments with embryos of Triturus. Exp Cell Res Suppl 3:346–357

    Google Scholar 

  • Tole S, Gutin G, Bhatnager L, Remedios R, Hebert JM (2006) Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol 289:141–151

    CAS  PubMed  Google Scholar 

  • Tosney KW, Landmesser LT (1985a) Specificity of early motoneuron growth cone outgrowth in the chick embryo. J Neurosci 5:2336–2344

    CAS  PubMed  Google Scholar 

  • Tosney KW, Landmesser LT (1985b) Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J Neurosci 5:2345–2358

    CAS  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    CAS  PubMed  Google Scholar 

  • Tramontin AD, Brenowitz EA (2000) Seasonal plasticity in the adult brain. Trends Neurosci 23:251–258

    CAS  PubMed  Google Scholar 

  • Triplett JW, Feldheim DA (2012) Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23:7–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle R, Nakagawa Y, Johnson JE, O’Leary DDM (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Math-1–deficient mice. Development 126:1903–1916

    CAS  PubMed  Google Scholar 

  • Tvrdik P, Capecchi M (2012) Gene targeting. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 19–35

    Google Scholar 

  • Urbanek P, Wang ZQ, Fetka L, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    CAS  PubMed  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Ergebn Anat Entw Gesch 41:1–88

    Google Scholar 

  • van den Eijnde SM (1999) Apoptosis and annexin V. Erasmus University, Rotterdam, Thesis

    Google Scholar 

  • van den Eijnde SM, Luijsterburg AJM, Boshart L, de Zeeuw CI, Reutelingsperger CPM, Vermeij-Keers C (1997) In situ detection of apoptosis during embryogenesis with annexin V: from whole mount to ultrastructure. Cytometry 29:313–320

    PubMed  Google Scholar 

  • van den Eijnde SM, Lips J, Boshart L, Vermeij-Keers C, Marani E, Reutelingsperger CPM, de Zeeuw CI (1999) Spatiotemporal distribution of dying neurons during early mouse development. Eur J Neurosci 11:712–724

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J (1995) Magnetic resonance of myelin, myelination and myelin disorders, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Van der Loos H, Dörfl J (1978) Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosci Lett 7:23–30

    PubMed  Google Scholar 

  • Van der Loos H, Welker E (1985) Development and plasticity of somatosensory brain maps. In: Rowe MJ, Willis WD (eds) Development, organization, and processing in somatosensory pathways. Liss, New York, pp 53–67

    Google Scholar 

  • Van der Loos H, Welker E, Dörfl J, Rumo G (1986) Selective breeding for variations in patterns of mystacial vibrissae of mice. Bilaterally symmetrical strains derived from ICR stock. J Hered 77:66–82

    PubMed  Google Scholar 

  • van Horck FPG, Weinl C, Holt CE (2004) Retinal axon guidance: novel mexchanisms for steering. Curr Opin Neurobiol 14:61–66

    PubMed  PubMed Central  Google Scholar 

  • van Raay TJ, Foskett SM, Connors TD, Klinger KW, Landes GM, Burn TC (1997) The NTN2L gene encoding a novel human netrin maps to the autosomal dominant polycystic kidney disease region on chromosome 16p13.3. Genomics 41:279–282

    PubMed  Google Scholar 

  • Vanderhaeghen P, Polleux F (2004) Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci 27:364–391

    Google Scholar 

  • Vermeij-Keers C (1972) Degeneration in the epithelial plate of hochstetter in the mouse: a light and electron microscopic study. Acta Morphol Neerl-Scand 9:386–387

    Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    CAS  PubMed  Google Scholar 

  • Vogt C (1842) Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). Jent und Gassmann, Solothurn (quoted from Clarke and Clarke 1996)

    Google Scholar 

  • Voight T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88

    Google Scholar 

  • von Lenhossék M (1895) Die feinere Bau des Nervensystems im Lichte neuester Forschungen. Fischer, Berlin

    Google Scholar 

  • Vonica A, Gumbiner BM (2007) The Xenopus Nieuwkoop center and the Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 312:90–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1933) Induction by the primitive streak and its derivatives. J Exp Biol 10:38–46

    Google Scholar 

  • Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J Neurosci 11:2477–2488

    CAS  PubMed  Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Persp Dev Neurobiol 5:3–16

    CAS  Google Scholar 

  • Watson C (2012) Hindbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 398–423

    Google Scholar 

  • Weickert CS, Webster MJ, Calvin SM, Herman MM, Hyde TM, Weinberger DR, Kleinman JE (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423:359–372

    CAS  PubMed  Google Scholar 

  • Weimann JM, Zhang YA, Levin ME, Devine WP, Brûlet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24:819–831

    CAS  PubMed  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1997) Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol 7:7–12

    CAS  PubMed  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15:411–433

    CAS  PubMed  Google Scholar 

  • Weiss P (1941) Nerve patterns: the mechanisms of nerve growth. Growth 5(Suppl):163–203

    CAS  Google Scholar 

  • Welker E (1985) Brain maps and patterns of sensory organs; a genetical and experimental analysis of the whisker-to-barrel pathway in mice (Mus musculus). Free University, Amsterdam, Thesis

    Google Scholar 

  • Wendling O, Ghyselinck NB, Chambon P, Mark M (2001) Roles of retinoic acid receptors in early embryonic morphogenesis and hinbrain patterning. Development 128:2031–2038

    CAS  PubMed  Google Scholar 

  • Westerfield M (ed) (1995) The zebrafish book, 3rd edn. University of Oregon Press, Eugene

    Google Scholar 

  • Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164

    CAS  PubMed  Google Scholar 

  • Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13:335–339

    CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341:405–409

    CAS  PubMed  Google Scholar 

  • Williams SE, Mason CA, Herrera A (2004) The optic chiasm as a midline choice point. Curr Opin Neurobiol 14:51–60

    CAS  PubMed  Google Scholar 

  • Wilson SI, Edlund T (2001) Neural induction: toward a unifying mechanism. Nat Neurosci 4(Suppl):1161–1168

    CAS  PubMed  Google Scholar 

  • Wilson SW, Ross LS, Parrett T, Easter SS Jr (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish Brachydanio rerio. Development 108:121–145

    CAS  PubMed  Google Scholar 

  • Windle WF (1935) Neurofibrillar development of cat embryos: extent of development in the telencephalon and diencephalon up to 15 mm. J Comp Neurol 63:139–171

    Google Scholar 

  • Windle WF, Austin MF (1936) Neurofibrillar development in the central nervous system of chick embryos up to 5 days incubation. J Comp Neurol 63:431–463

    Google Scholar 

  • Windle WF, Baxter RE (1936) The first neurofibrillar development in albino rat embryos. J Comp Neurol 63:173–199

    Google Scholar 

  • Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    CAS  PubMed  Google Scholar 

  • Wingate R, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental avian hindbrain. Development 122:2143–2152

    CAS  PubMed  Google Scholar 

  • Wittler L, Kessel M (2004) The acquisition of neural fate in the chick. Mech Dev 121:1031–1042

    CAS  PubMed  Google Scholar 

  • Wolpert L, Tickle C (2011) Principles of development, 4th edn. Current Biology, London

    Google Scholar 

  • Wong K, Park HT, Wu JY, Rao Y (2002) Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev 12:583–591

    CAS  PubMed  Google Scholar 

  • Wood WB (ed) (1988) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Wood P, Bunge RP (1984) The biology of the oligodendrocyte. In: Norton WT (ed) Oligodendroglia, vol 5, Adv Neurochem. Plenum, New York, pp 1–46

    Google Scholar 

  • Woolsey TA, Welker C, Schwartz RH (1975) Comparative anatomical studies of the Sm1 face cortex with special reference to the occurrence of ‘barrels’ in layer IV. J Comp Neurol 164:79–94

    CAS  PubMed  Google Scholar 

  • Wright AG, Demyanenko GP, Powell A, Schachner M, Enriquez-Barreto L, Tran TS et al (2007) Close homolog of L1 and neuropilin-1 mediate guidance of thalamocortical axons at the ventral telencephalon. J Neurosci 27:13667–13679

    CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1997) Apoptosis: an overview. Br Med Bull 53:451–465

    CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr J, Currie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    CAS  PubMed  Google Scholar 

  • Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR (2005) Myelogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354–1365

    CAS  PubMed  Google Scholar 

  • Xu Q, Mellitzer G, Robinson V, Wilkinson DG (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 400:267–271

    Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

    CAS  PubMed  Google Scholar 

  • Yaginuma H, Shiga T, Oppenheim RW (1994) Early developmental patterns and mechanisms of axonal guidance of spinal interneurons in the chick embryo spinal cord. Prog Neurobiol 44:249–278

    CAS  PubMed  Google Scholar 

  • Yates PA, Roskies AL, McLaughlin T, O’Leary DDM (2001) Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J Neurosci 21:8548–8563

    CAS  PubMed  Google Scholar 

  • Yoshikawa S, Thomas JB (2004) Secreted cell signaling molecules in axon guidance. Curr Opin Neurobiol 14:45–50

    CAS  PubMed  Google Scholar 

  • Yoshikawa S, McKinnon RD, Kokel M, Thomas JB (2003) Wnt-mediated axon guidance via the Drosophiladerailed receptor. Nature 422:583–588

    CAS  PubMed  Google Scholar 

  • Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4(Suppl):1169–1176

    CAS  PubMed  Google Scholar 

  • Yuan J, Horvitz HR (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138:33–41

    CAS  PubMed  Google Scholar 

  • Yuan SS, Cox LA, Dasika GK, Lee EY (1999a) Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol 207:62–75

    CAS  PubMed  Google Scholar 

  • Yuan W, Zhou L, Chen J, Rao Y, Ornitz D (1999b) The mouse slit family: secreted ligands for ROBO expression in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212:290–306

    CAS  PubMed  Google Scholar 

  • Zaki PA, Quinn JC, Price DJ (2003) Mouse models of telencephalic development. Curr Opin Genet Dev 13:423–437

    CAS  PubMed  Google Scholar 

  • Zeltser LM, Larsen CW, Lumsden A (2001) A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci 4:683–684

    CAS  PubMed  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specifications. Cell 109:61–73

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2014). Mechanisms of Development. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics