Skip to main content

Silicon-Based Nanoprobes for Bioimaging Applications

  • Chapter
  • First Online:
Silicon Nano-biotechnology

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 1278 Accesses

Abstract

Bioimaging, serving as one of the most important techniques, provides direct visualization of biological systems. Biological probes are essential tools for bioimaging applications. Scientists have devoted tremendous efforts to developing various kinds of fluorescent nanomaterials (e.g., II–VI semiconductor quantum dots, fluorescent carbon nanodots, fluorescent nanodiamonds, silicon nanoparticles (SiNPs))-based bioprobes, significantly facilitating the advancement of bioimaging applications. Among them, SiNPs are regarded as potentially ideal fluorescent bioprobes due to their unique optical properties (e.g., high fluorescence and strong antiphotobleaching property) and excellent biocompatibility. In the past decade, SiNPs-based fluorescent bioprobes have been extensively explored for in vitro and in vivo imaging. Of particular significance, taking advantage of their ultrahigh photostability and non or lowly toxic properties, fluorescent SiNPs-based nanoprobes are demonstrated to be superbly suited to long-term and real-time bioimaging applications. Also of note, multifunctional SiNPs with fluorescent and magnetic properties have been developed for multimodel bioimaging studies in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  Google Scholar 

  2. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2002) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    Article  Google Scholar 

  3. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  Google Scholar 

  4. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  Google Scholar 

  5. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  Google Scholar 

  6. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  7. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423

    Article  Google Scholar 

  8. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  9. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  Google Scholar 

  10. Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun’ko YK, Kotov NA (2008) High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2(5):928–938

    Google Scholar 

  11. Su YY, He Y, Lu HT, Sai LM, Li QN, Li WX, Wang LH, Shen PP, Huang Q, Fan CH (2009) The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25

    Article  Google Scholar 

  12. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW (2010) In vivo quantum-dot toxicity assessment. Small 6(1):138–144

    Article  Google Scholar 

  13. Su Y, Hu M, Fan C, He Y, Li Q, Li W, Wang L-H, Shen P, Huang Q (2010) The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31:4829–4834

    Article  Google Scholar 

  14. Chen N, He Y, Su YY, Li XM, Huang Q, Wang HF, Zhang XZ, Tai RZ, Fan CH (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244

    Article  Google Scholar 

  15. He Y, Fan C, Lee S-T (2010) Silicon nanostructures for bioapplications. Nano Today 5(4):282–295

    Article  Google Scholar 

  16. Kim B-H, Cho C-H, Park S-J, Park N-M, Sung GY (2006) Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency. Appl Phys Lett 89:063509

    Article  Google Scholar 

  17. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  Google Scholar 

  18. Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res, Part A 94A(4):1236–1243

    Google Scholar 

  19. Li Z, Ruckenstein E (2004) Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4(8):1463–1467

    Article  Google Scholar 

  20. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44(29):4550–4554

    Article  Google Scholar 

  21. He Y, Kang ZH, Li QS, Tsang CHA, Fan CH, Lee S-T (2009) Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48:128–132

    Article  Google Scholar 

  22. He Y, Su Y, Yang X, Kang Z, Xu T, Zhang R, Fan C, Lee S-T (2009) Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 131(12):4434–4438

    Article  Google Scholar 

  23. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878

    Article  Google Scholar 

  24. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132(1):248–253

    Article  Google Scholar 

  25. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  Google Scholar 

  26. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2009) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47

    Article  Google Scholar 

  27. Su Y, Peng F, Jiang Z, Zhong Y, Lu Y, Jiang X, Huang Q, Fan C, Lee S-T, He Y (2011) In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 32(25):5855–5862

    Article  Google Scholar 

  28. Lu Y, Su Y, Zhou Y, Wang J, Peng F, Zhong Y, Huang Q, Fan C, He Y (2013) In vivo behavior of near infrared-emitting quantum dots. Biomaterials 34(17):4302–4308. doi:10.1016/j.biomaterials.2013.02.054

    Article  Google Scholar 

  29. He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee S-T (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133(36):14192–14195

    Article  Google Scholar 

  30. Zhong Y, Peng F, Wei X, Zhou Y, Wang J, Jiang X, Su Y, Su S, Lee S-T, He Y (2012) Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew Chem Int Ed 51(34):8485–8489

    Article  Google Scholar 

  31. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S-T, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356

    Article  Google Scholar 

  32. Shen P, Ohta S, Inasawa S, Yamaguchi Y (2011) Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dots. Chem Commun 47(29):8409–8411

    Article  Google Scholar 

  33. Ohta S, Shen P, Inasawa S, Yamaguchi Y (2012) Size-and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot aggregates. J Mater Chem 22(21):10631–10638

    Article  Google Scholar 

  34. Erogbogbo F, Yong K-T, Roy I, Hu R, Law W-C, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1):413–423

    Article  Google Scholar 

  35. Das P, Saha A, Maity AR, Ray SC, Jana NR (2013) Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale 5:5732–5737

    Article  Google Scholar 

  36. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KCP (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    Article  Google Scholar 

  37. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  Google Scholar 

  38. Shulman RG, Wyluda BJ (1956) Nuclear magnetic resonance of 29Si in n- and p-type silicon. Phys Rev 103(4):1127–1129

    Article  Google Scholar 

  39. Ladd TD, Maryenko D, Yamamoto Y, Abe E, Itoh KM (2005) Coherence time of decoupled nuclear spins in silicon. Phys Rev B 71(1):014401

    Article  Google Scholar 

  40. Dementyev AE, Cory DG, Ramanathan C (2008) Dynamic nuclear polarization in silicon microparticles. Phys Rev Lett 100(12):127601

    Article  Google Scholar 

  41. Aptekar JW, Cassidy MC, Johnson AC, Barton RA, Lee M, Ogier AC, Vo C, Anahtar MN, Ren Y, Bhatia SN, Ramanathan C, Cory DG, Hill AL, Mair RW, Rosen MS, Walsworth RL, Marcus CM (2009) Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents. ACS Nano 3(12):4003–4008

    Article  Google Scholar 

  42. Cassidy MC, Chan HR, Ross BD, Bhattacharya PK, Marcus CM (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8(5):363–368

    Article  Google Scholar 

  43. Atkins TM, Cassidy MC, Lee M, Ganguly S, Marcus CM, Kauzlarich SM (2013) Synthesis of long T1 silicon nanoparticles for hyperpolarized 29Si magnetic resonance imaging. ACS Nano 7(2):1609–1617

    Article  Google Scholar 

  44. Ackerman JJ (2013) Magnetic resonance imaging: Silicon for the future. Nat Nanotechnol 8(5):313–315

    Article  Google Scholar 

  45. Zhang X, Brynda M, Britt RD, Carroll EC, Larsen DS, Louie AY, Kauzlarich SM (2007) Synthesis and characterization of manganese-doped silicon nanoparticles: bifunctional paramagnetic-optical nanomaterial. J Am Chem Soc 129(35):10668–10669

    Article  Google Scholar 

  46. Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132(6):2016–2023

    Article  Google Scholar 

  47. Sato K, Yokosuka S, Takigami Y, Hirakuri K, Fujioka K, Manome Y, Sukegawa H, Iwai H, Fukata N (2011) Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility. J Am Chem Soc 133(46):18626–18633

    Article  Google Scholar 

  48. Singh MP, Atkins TM, Muthuswamy E, Kamali S, Tu C, Louie AY, Kauzlarich SM (2012) Development of iron-doped silicon nanoparticles as bimodal imaging agents. ACS Nano 6(6):5596–5604

    Article  Google Scholar 

  49. Erogbogbo F, Yong K-T, Hu R, Law W-C, Ding H, Chang C-W, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4(9):5131–5138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, Y., Su, Y. (2014). Silicon-Based Nanoprobes for Bioimaging Applications. In: Silicon Nano-biotechnology. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54668-6_4

Download citation

Publish with us

Policies and ethics