Advertisement

Silicon-Based Platform for Biosensing Applications

  • Yao He
  • Yuanyuan Su
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Development of high-performance biosensors vastly facilitates the analysis and detection of various biological species, including nucleic acids, protein, cell, etc. Functional nanomaterials (e.g., silver/gold nanoparticles, carbon nanotubes, graphene, silicon nanowires, etc) serve as new platform for design of nano-biosensors featuring high sensitivity and specificity. Taking advantage of the attractive merits of silicon nanowires (SiNWs) (e.g., unique electronic/optical properties, huge surface-to-volume rations, surface tailorability, fast response and good reproducibility, and compatibility with conventional silicon technology), SiNWs have been widely employed for constructing various kinds of electrochemical and optical biosensors, enabling ultrasensitive, specific, and reproducible detection of DNA and protein. We introduce a number of typical SiNWs-based biosensors (e.g., field-effect transistor (FET), amperometric-, surface-enhanced Raman scattering (SERS), and fluorescence-based biosensors) in this chapter, aiming to summarize the representative progresses of this research field in recent years. These kinds of high-quality silicon-based sensors show potentially great promise for myriad practical applications, such as medical diagnosis, food safety, drug security, environment monitoring, as well as anti-bioterrorism and so forth.

Keywords

Silicon nanowires Biosensor Field effect transistor Surface-enhanced Raman scattering (SERS) DNA and protein detection Sensitivity and specificity 

References

  1. 1.
    Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123(21):5164–5165Google Scholar
  2. 2.
    Yan J, Hu M, Li D, He Y, Zhao R, Jiang X, Song S, Wang L, Fan CH (2008) A nano-and micro-integrated protein chip based on quantum dot probes and a microfluidic network. Nano Res 1(6):490–496Google Scholar
  3. 3.
    Hu M, Yan J, He Y, Lu H, Weng L, Song S, Fan CH, Wang L (2009) Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 4(1):488–494Google Scholar
  4. 4.
    Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643Google Scholar
  5. 5.
    Zhang J, Song S, Wang L, Pan D, Fan C (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2(11):2888–2895Google Scholar
  6. 6.
    Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39(11):4234–4243Google Scholar
  7. 7.
    Giljohann DA, Mirkin CA (2009) Drivers of bio diagnostic development. Nature 462(7272):461–464Google Scholar
  8. 8.
    Chemla Y, Grossman H, Poon Y, McDermott R, Stevens R, Alper M, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci USA 97(26):14268–14272Google Scholar
  9. 9.
    Perez JM, Josephson L, O’Loughlin T, Högemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820Google Scholar
  10. 10.
    Besteman K, Lee J-O, Wiertz FG, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730Google Scholar
  11. 11.
    Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100(9):4984–4989Google Scholar
  12. 12.
    Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125(9):2408–2409Google Scholar
  13. 13.
    Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126(5):1563–1568Google Scholar
  14. 14.
    Byon HR, Choi HC (2006) Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J Am Chem Soc 128(7):2188–2189Google Scholar
  15. 15.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292Google Scholar
  16. 16.
    Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8(4):20–28Google Scholar
  17. 17.
    Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445Google Scholar
  18. 18.
    Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69Google Scholar
  19. 19.
    Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633Google Scholar
  20. 20.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792Google Scholar
  21. 21.
    Ma D, Lee C, Au F, Tong S, Lee S-T (2003) Small-diameter silicon nanowire surfaces. Science 299(5614):1874–1877Google Scholar
  22. 22.
    Schmidt V, Wittemann JV, Senz S, Gösele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702Google Scholar
  23. 23.
    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosensors Bioelectron 16(1):121–131Google Scholar
  24. 24.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458Google Scholar
  25. 25.
    Chen K-I, Li B-R, Chen Y-T (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2):131–154Google Scholar
  26. 26.
    Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1):51–65Google Scholar
  27. 27.
    Chen C-P, Ganguly A, Lu C-Y, Chen T-Y, Kuo C-C, Chen R-S, Tu W-H, Fischer WB, Chen K-H, Chen L-C (2011) Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal Chem 83(6):1938–1943Google Scholar
  28. 28.
    Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4(12):824–829Google Scholar
  29. 29.
    Cui Y, Duan X, Hu J, Lieber CM (2000) Doping and electrical transport in silicon nanowires. J Phys Chem B 104(22):5213–5216Google Scholar
  30. 30.
    Patolsky F, Zheng G, Lieber CM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1(4):1711–1724Google Scholar
  31. 31.
    Hahm J-i, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54Google Scholar
  32. 32.
    Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247Google Scholar
  33. 33.
    Bunimovich YL, Shin YS, Yeo W-S, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128(50):16323–16331Google Scholar
  34. 34.
    Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung C-H, Fan Y, Buddharaju KD, Kong J (2007) Silicon nanowire arrays for label-free detection of DNA. Anal Chem 79(9):3291–3297Google Scholar
  35. 35.
    Cattani-Scholz A, Pedone D, Dubey M, Neppl S, Nickel B, Feulner P, Schwartz J, Abstreiter G, Tornow M (2008) Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2(8):1653–1660Google Scholar
  36. 36.
    Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508Google Scholar
  37. 37.
    Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan CH (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11(9):3974–3978Google Scholar
  38. 38.
    Gao A, Lu N, Wang Y, Dai P, Li T, Gao X, Wang Y, Fan CH (2012) Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett 12(10):5262–5268Google Scholar
  39. 39.
    Dorvel BR, Reddy B, Go J, Duarte Guevara C, Salm E, Alam MA, Bashir R (2012) Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6(7):6150–6164Google Scholar
  40. 40.
    Kwiat M, Elnathan R, Kwak M, de Vries JW, Pevzner A, Engel Y, Burstein L, Khatchtourints A, Lichtenstein A, Flaxer E, Herrmann A, Patolsky F (2012) Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications. J Am Chem Soc 134(1):280–292Google Scholar
  41. 41.
    Gao A, Zou N, Dai P, Lu N, Li T, Wang Y, Zhao J, Mao H (2013) Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Lett 13(9):4123–4130Google Scholar
  42. 42.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301Google Scholar
  43. 43.
    Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522Google Scholar
  44. 44.
    Kim A, Ah CS, Yu HY, Yang J-H, Baek I-B, Ahn C-G, Park CW, Jun MS, Lee S (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett 91(10):103901–103903Google Scholar
  45. 45.
    Chua JH, Chee R-E, Agarwal A, Wong SM, Zhang G-J (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81(15):6266–6271Google Scholar
  46. 46.
    Gong J-R (2010) Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small 6(8):967–973Google Scholar
  47. 47.
    Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S, Ko F-H (2013) Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem 85(16):7912–7918Google Scholar
  48. 48.
    Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu LCM, Lee S-T (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94(19):193101–193103Google Scholar
  49. 49.
    Lin C-H, Hsiao C-Y, Hung C-H, Lo Y-R, Lee C-C, Su C-J, Lin H-C, Ko F-H, Huang T-Y, Yang Y-S (2008) Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun 44:5749–5751Google Scholar
  50. 50.
    McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6(5):379–384Google Scholar
  51. 51.
    Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010) Supersensitive detection of explosives by silicon nanowire arrays. Angew Chem Int Ed Engl 49(38):6830–6835Google Scholar
  52. 52.
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101(39):14017–14022Google Scholar
  53. 53.
    Stern E, Steenblock ER, Reed MA, Fahmy TM (2008) Label-free electronic detection of the antigen-specific T-cell immune response. Nano Lett 8(10):3310–3314Google Scholar
  54. 54.
    Wang WU, Chen C, Lin K-h, Fang Y, Lieber CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102(9):3208–3212Google Scholar
  55. 55.
    Lin S-P, Pan C-Y, Tseng K-C, Lin M-C, Chen C-D, Tsai C-C, Yu S-H, Sun Y-C, Lin T-W, Chen Y-T (2009) A reversible surface functionalized nanowire transistor to study protein–protein interactions. Nano Today 4(3):235–243Google Scholar
  56. 56.
    Zhang G-J, Huang MJ, Ang JAJ, Yao Q, Ning Y (2013) Label-free detection of carbohydrate-protein interactions using nanoscale field-effect transistor biosensors. Anal Chem 85(9):4392–4397Google Scholar
  57. 57.
    Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104Google Scholar
  58. 58.
    Pui T-S, Agarwal A, Ye F, Balasubramanian N, Chen P (2009) CMOS-compatible nanowire sensor arrays for detection of cellular bioelectricity. Small 5(2):208–212Google Scholar
  59. 59.
    Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9(2):914–918Google Scholar
  60. 60.
    Elfström N, Juhasz R, Sychugov I, Engfeldt T, Karlström AE, Linnros J (2007) Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett 7(9):2608–2612Google Scholar
  61. 61.
    Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7(11):3405–3409Google Scholar
  62. 62.
    Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8(4):1066–1070Google Scholar
  63. 63.
    Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838Google Scholar
  64. 64.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419Google Scholar
  65. 65.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838Google Scholar
  66. 66.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470Google Scholar
  67. 67.
    Draghici S, Khatri P, Eklund AC, Szallasi Z (2006) Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 22(2):101–109Google Scholar
  68. 68.
    Bayer EA, Wilchek M (1990) Biotin-binding proteins: overview and prospects. Methods Enzymol 184:49–51 (Academic Press)Google Scholar
  69. 69.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5(2):138–142Google Scholar
  70. 70.
    Krivitsky V, Hsiung L-C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F (2012) Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. Nano Lett 12(9):4748–4756Google Scholar
  71. 71.
    Feigel IM, Vedala H, Star A (2011) Biosensors based on one-dimensional nanostructures. J Mater Chem 21(25):8940–8954Google Scholar
  72. 72.
    Shao MW, Shan YY, Wong NB, Lee ST (2005) Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Adv Funct Mater 15(9):1478–1482Google Scholar
  73. 73.
    Shao M-W, Yao H, Zhang M-L, Wong N-B, Shan Y-Y, Lee S-T (2005) Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Appl Phys Lett 87(18):183103–183106Google Scholar
  74. 74.
    Chen W, Yao H, Tzang CH, Zhu J, Yang M, Lee S-T (2006) Silicon nanowires for high-sensitivity glucose detection. Appl Phys Lett 88(21):213104Google Scholar
  75. 75.
    Su S, He Y, Zhang M, Yang K, Song S, Zhang X, Fan CH, Lee S-T (2008) High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Appl Phys Lett 93(2):023113Google Scholar
  76. 76.
    Su S, He Y, Song S, Li D, Wang L, Fan CH, Lee S-T (2010) A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. Nanoscale 2(9):1704–1707Google Scholar
  77. 77.
    Yan S, He N, Song Y, Zhang Z, Qian J, Xiao Z (2010) A novel biosensor based on gold nanoparticles modified silicon nanowire arrays. J Electroanal Chem 641(1–2):136–140Google Scholar
  78. 78.
    Su S, Wei X, Guo Y, Zhong Y, Su YY, Huang Q, Fan CH, He Y (2013) A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part Part Syst Charact 30(4):326–331Google Scholar
  79. 79.
    Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543(2):127–133Google Scholar
  80. 80.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166Google Scholar
  81. 81.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217Google Scholar
  82. 82.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84(1):1–20Google Scholar
  83. 83.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106Google Scholar
  84. 84.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670Google Scholar
  85. 85.
    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540Google Scholar
  86. 86.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90Google Scholar
  87. 87.
    Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551Google Scholar
  88. 88.
    Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, Zhang G, Li X, Liu Z, Utz PJ, Jiang K, Fan S, Dai H (2008) Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol 26(11):1285–1292Google Scholar
  89. 89.
    Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31(4):249–257Google Scholar
  90. 90.
    Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428Google Scholar
  91. 91.
    Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X (2008) Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv Funct Mater 18(16):2348–2355Google Scholar
  92. 92.
    He Y, Fan CH, Lee S-T (2010) Silicon nanostructures for bioapplications. Nano Today 5(4):282–295Google Scholar
  93. 93.
    He Y, Su S, Xu T, Zhong Y, Zapien JA, Li J, Fan CH, Lee S-T (2011) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6(2):122–130Google Scholar
  94. 94.
    Wei X, Su S, Guo Y, Jiang X, Zhong Y, Su YY, Fan CH, Lee S-T, He Y (2013) A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. Small 9(15):2493–2499Google Scholar
  95. 95.
    Leng W, Yasseri AA, Sharma S, Li Z, Woo HY, Vak D, Bazan GC, Kelley AM (2006) Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering. Anal Chem 78(17):6279–6282Google Scholar
  96. 96.
    Hakim MMA, Lombardini M, Sun K, Giustiniano F, Roach PL, Davies DE, Howarth PH, de Planque MRR, Morgan H, Ashburn P (2012) Thin film polycrystalline silicon nanowire biosensors. Nano Lett 12(4):1868–1872Google Scholar
  97. 97.
    Shao M-W, Zhang M-L, Wong N-B, Ma DD-d, Wang H, Chen W, Lee S-T (2008) Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced Raman spectroscopy. Appl Phys Lett 93(23):233113–233118 Google Scholar
  98. 98.
    Zhang M-L, Yi C-Q, Fan X, Peng K-Q, Wong N-B, Yang M-S, Zhang R-Q, Lee S-T (2008) A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay. Appl Phys Lett 92(4):043113–043116Google Scholar
  99. 99.
    Galopin E, Barbillat J, Coffinier Y, Szunerits S, Patriarche G, Boukherroub R (2009) Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl Mater Int 1(7):1396–1403Google Scholar
  100. 100.
    Fang C, Agarwal A, Widjaja E, Garland MV, Wong SM, Linn L, Khalid NM, Salim SM, Balasubramanian N (2009) Metallization of silicon nanowires and SERS response from a single metallized nanowire. Chem Mater 21(15):3542–3548Google Scholar
  101. 101.
    Zhang M-L, Fan X, Zhou H-W, Shao M-W, Zapien JA, Wong N-B, Lee S-T (2010) A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J Phys Chem C 114(5):1969–1975Google Scholar
  102. 102.
    Wang XT, Shi WS, She GW, Mu LX, Lee S-T (2010) High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl Phys Lett 96(5):053104Google Scholar
  103. 103.
    Yi C, Li C-W, Fu H, Zhang M, Qi S, Wong N-B, Lee S-T, Yang M (2010) Patterned growth of vertically aligned silicon nanowire arrays for label-free DNA detection using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 397(7):3143–3150Google Scholar
  104. 104.
    Peng Z, Hu H, Utama MIB, Wong LM, Ghosh K, Chen R, Wang S, Shen Z, Xiong Q (2010) Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping. Nano Lett 10(10):3940–3947Google Scholar
  105. 105.
    Han X, Wang H, Ou X, Zhang X (2012) Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks. J Mater Chem 22(28):14127–14132Google Scholar
  106. 106.
    Chen R, Li D, Hu H, Zhao Y, Wang Y, Wong N, Wang S, Zhang Y, Hu J, Shen Z, Xiong Q (2012) Tailoring optical properties of silicon nanowires by Au nanostructure decorations: enhanced Raman scattering and photodetection. J Phys Chem C 116(7):4416–4422Google Scholar
  107. 107.
    Han X, Wang H, Ou X, Zhang X (2013) Silicon nanowire-based surface-enhanced Raman spectroscopy endoscope for intracellular pH detection. ACS Appl Mater Interfaces 5(12):5811–5814Google Scholar
  108. 108.
    Wang H, Han X, Ou X, Lee C-S, Zhang X, Lee S-T (2013) Silicon nanowire based single-molecule SERS sensor. Nanoscale 5(17):8172–8176Google Scholar
  109. 109.
    Yang X, Zhong H, Zhu Y, Shen J, Li C (2013) Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Trans 42(39):14324–14330Google Scholar
  110. 110.
    Jiang Z, Jiang X, Su S, Wei X, Lee S-T, He Y (2012) Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection. Appl Phys Lett 100(20):203104Google Scholar
  111. 111.
    Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y (2013) Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 85(5):2809–2816Google Scholar
  112. 112.
    Mu L, Shi W, Chang JC, Lee S-T (2008) Silicon nanowires-based fluorescence sensor for Cu (II). Nano Lett 8(1):104–109Google Scholar
  113. 113.
    Su S, Wei X, Zhong Y, Guo Y, Su Y, Huang Q, Lee S-T, Fan C, He Y (2012) Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano 6(3):2582–2590Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Devices Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina

Personalised recommendations