Skip to main content

Silicon Nanostructures

  • Chapter
  • First Online:
Silicon Nano-biotechnology

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Functional nanomaterials play fundamental roles in the development of nanotechnology, serving as novel and powerful tools for both basic studies and practical applications. Silicon nanomaterials are an important type of nanomaterials, exhibiting unique optical, electronic, or/and mechanical properties. The fast development of silicon nanomaterials with well-defined structures and required functionalities has vastly promoted the advancement of silicon nanotechnology. Silicon nanoparticles (SiNPs) and silicon nanowires (SiNWs) are well known as the most important zero- and one-dimensional silicon nanostructures. In the past three decades, scientists have made great strides in developing a great deal of fabrication techniques to prepare SiNPs and SiNWs. In particular, solution-phase reduction, electrochemical etching and microwave-assisted synthesis, etc., have been well developed for the production of SiNPs. On the other hand, several well-studied strategies (e.g., chemical vapor deposition (CVD), oxide-assisted growth (OAG), electroless etching, etc.) are highly efficacious for the synthesis of SiNWs. In this chapter, we give an introduction to these classic synthetic methods in a detailed way, and discuss the prospect of the design and fabrication of functional silicon nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  Google Scholar 

  2. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633

    Article  Google Scholar 

  3. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed 48(5):872–897

    Article  Google Scholar 

  4. Hong H, Zhang Y, Sun J, Cai W (2009) Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4(5):399–413

    Article  Google Scholar 

  5. Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA (2008) Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater 7(3):248–254

    Google Scholar 

  6. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241

    Article  Google Scholar 

  7. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408(6811):440–444

    Google Scholar 

  8. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297

    Article  Google Scholar 

  9. Grom GF, Lockwood DJ, McCaffrey JP, Labbe HJ, Fauchet PM, White B, Diener J, Kovalev D, Koch F, Tsybeskov L (2000) Ordering and self-organization in nanocrystalline silicon. Nature 407(6802):358–361

    Article  Google Scholar 

  10. Allen JE, Hemesath ER, Perea DE, Lensch-Falk JL, LiZ Y, Yin F, Gass MH, Wang P, Bleloch AL, Palmer RE, Lauhon LJ (2008) High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3(3):168–173

    Google Scholar 

  11. Brus L, Szajowski P, Wilson W, Harris T, Schuppler S, Citrin P (1995) Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J Am Chem Soc 117(10):2915–2922

    Article  Google Scholar 

  12. Wilson WL, Szajowski P, Brus L (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244

    Article  Google Scholar 

  13. Park N-M, Choi C-J, Seong T-Y, Park S-J (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86(7):1355–1357

    Article  Google Scholar 

  14. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048

    Article  Google Scholar 

  15. Cullis A, Canham L (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338

    Article  Google Scholar 

  16. Yang C-S, Bley RA, Kauzlarich SM, Lee HW, Delgado GR (1999) Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J Am Chem Soc 121(22):5191–5195

    Article  Google Scholar 

  17. Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem Commun 17:1822–1823

    Article  Google Scholar 

  18. Tilley RD, Yamamoto K (2006) The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv Mater 18(15):2053–2056

    Article  Google Scholar 

  19. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132(1):248–253

    Article  Google Scholar 

  20. Arul Dhas N, Raj CP, Gedanken A (1998) Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem Mater 10(11):3278–3281

    Article  Google Scholar 

  21. Heintz AS, Fink MJ, Mitchell BS (2007) Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv Mater 19(22):3984–3988

    Article  Google Scholar 

  22. Riabinina D, Durand C, Chaker M, Rosei F (2006) Photoluminescent silicon nanocrystals synthesized by reactive laser ablation. Appl Phys Lett 88(7):073105

    Article  Google Scholar 

  23. Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60 %. Appl Phys Lett 88(23):233116

    Article  Google Scholar 

  24. Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5(4):655–659

    Article  Google Scholar 

  25. Mangolini L, Kortshagen U (2007) Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater 19(18):2513–2519

    Article  Google Scholar 

  26. Kim NY, Laibinis PE (1997) Thermal derivatization of porous silicon with alcohols. J Am Chem Soc 119(9):2297–2298

    Article  Google Scholar 

  27. Kang Z, Tsang CHA, Zhang Z, Zhang M, Wong N-b, Zapien JA, Shan Y, Lee S-T (2007) A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J Am Chem Soc 129(17):5326–5327

    Google Scholar 

  28. Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee S-T (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21(6):661–664

    Article  Google Scholar 

  29. He Y, Kang ZH, Li QS, Tsang CHA, Fan CH, Lee S-T (2009) Ultrastable, highly Fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48:128–132

    Article  Google Scholar 

  30. He Y, Su Y, Yang X, Kang Z, Xu T, Zhang R, Fan C, Lee S-T (2009) Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 131(12):4434–4438

    Article  Google Scholar 

  31. He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee S-T (2011) One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133(36):14192–14195

    Article  Google Scholar 

  32. Atkins TM, Thibert A, Larsen DS, Dey S, Browning ND, Kauzlarich SM (2011) Femtosecond ligand/core dynamics of microwave-assisted synthesized silicon quantum dots in aqueous solution. J Am Chem Soc 133(51):20664–20667

    Article  Google Scholar 

  33. Zhong Y, Peng F, Wei X, Zhou Y, Wang J, Jiang X, Su Y, Su S, Lee S-T, He Y (2012) Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew Chem Int Ed 51(34):8485–8489

    Article  Google Scholar 

  34. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S-T, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356

    Article  Google Scholar 

  35. Li QS, Zhang RQ, Niehaus TA, Frauenheim T, Lee S-T (2007) Theoretical studies on optical and electronic properties of propionic-acid-terminated silicon quantum dots. J Chem Theory Comput 3(4):1518–1526

    Article  Google Scholar 

  36. Li Q, Zhang R, Lee S, Niehaus TA, Frauenheim T (2008) Amine-capped silicon quantum dots. Appl Phys Lett 92(5):053107

    Article  Google Scholar 

  37. Wang X, Zhang R, Niehaus TA, Frauenheim T (2007) Excited state properties of allylamine-capped silicon quantum dots. J Phys Chem C 111(6):2394–2400

    Article  Google Scholar 

  38. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125(9):2786–2791

    Article  Google Scholar 

  39. Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3(2):163–167

    Article  Google Scholar 

  40. Li Q, He Y, Chang J, Wang L, Chen H, Tan Y-W, Wang H, Shao Z (2013) Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J Am Chem Soc 135(40):14924–14927

    Article  Google Scholar 

  41. Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39(11):4234–4243

    Article  Google Scholar 

  42. He Y, Fan C, Lee S-T (2010) Silicon nanostructures for bioapplications. Nano Today 5(4):282–295

    Article  Google Scholar 

  43. Li Z, Ruckenstein E (2004) Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4(8):1463–1467

    Article  Google Scholar 

  44. Sato S, Swihart MT (2006) Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem Mater 18(17):4083–4088

    Article  Google Scholar 

  45. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44(29):4550–4554

    Article  Google Scholar 

  46. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878

    Article  Google Scholar 

  47. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  Google Scholar 

  48. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47

    Article  Google Scholar 

  49. Ma D, Lee C, Au F, Tong S, Lee S-T (2003) Small-diameter silicon nanowire surfaces. Science 299(5614):1874–1877

    Article  Google Scholar 

  50. Schmidt V, Wittemann JV, Senz S, Gösele U (2009) Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702

    Article  Google Scholar 

  51. Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598

    Article  Google Scholar 

  52. Wagner R, Ellis W (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Article  Google Scholar 

  53. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211

    Article  Google Scholar 

  54. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee S-T (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837

    Article  Google Scholar 

  55. Schmidt V, Wittemann J, Gosele U (2010) Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev 110(1):361–388

    Article  Google Scholar 

  56. Wu Y, Yang P (2001) Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 123(13):3165–3166

    Article  Google Scholar 

  57. Putnam MC, Filler MA, Kayes BM, Kelzenberg MD, Guan Y, Lewis NS, Eiler JM, Atwater HA (2008) Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed Si wires. Nano Lett 8(10):3109–3113

    Article  Google Scholar 

  58. Zhang RQ, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640

    Article  Google Scholar 

  59. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473

    Article  Google Scholar 

  60. Lu X, Hanrath T, Johnston KP, Korgel BA (2002) Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate. Nano Lett 3(1):93–99

    Article  Google Scholar 

  61. Heitsch AT, Fanfair DD, Tuan H-Y, Korgel BA (2008) Solution-liquid-solid (SLS) growth of silicon nanowires. J Am Chem Soc 130(16):5436–5437

    Article  Google Scholar 

  62. Hanrath T, Korgel BA (2003) Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv Mater 15(5):437–440

    Article  Google Scholar 

  63. Zhang YF, Tang YH, Peng HY, Wang N, Lee CS, Bello I, Lee S-T (1999) Diameter modification of silicon nanowires by ambient gas. Appl Phys Lett 75(13):1842–1844

    Article  Google Scholar 

  64. Tang YH, Zhang YF, Wang N, Lee CS, Han XD, Bello I, Lee S-T (1999) Morphology of Si nanowires synthesized by high-temperature laser ablation. J Appl Phys 85(11):7981–7983

    Article  Google Scholar 

  65. Shi WS, Peng HY, Zheng YF, Wang N, Shang NG, Pan ZW, Lee CS, Lee S-T (2000) Synthesis of large areas of highly oriented, very long silicon nanowires. Adv Mater 12(18):1343–1345

    Article  Google Scholar 

  66. Pan H, Lim S, Poh C, Sun H, Wu X, Feng Y, Lin J (2005) Growth of Si nanowires by thermal evaporation. Nanotechnology 16(4):417

    Article  Google Scholar 

  67. Juhasz R, Elfström N, Linnros J (2005) Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett 5(2):275–280

    Article  Google Scholar 

  68. Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett 9(3):1015–1022

    Article  Google Scholar 

  69. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14(16):1164–1167

    Article  Google Scholar 

  70. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chem Int Ed 44(18):2737–2742

    Article  Google Scholar 

  71. Peng K, Lu A, Zhang R, Lee S-T (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18(19):3026–3035

    Article  Google Scholar 

  72. Hsu C-M, Connor ST, Tang MX, Cui Y (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl Phys Lett 93(13):133109

    Article  Google Scholar 

  73. Lew K-K, Redwing JM (2003) Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J Cryst Growth 254(1–2):14–22

    Article  Google Scholar 

  74. Chung S-W, Yu J-Y, Heath JR (2000) Silicon nanowire devices. Appl Phys Lett 76(15):2068–2070

    Article  Google Scholar 

  75. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4(3):433–436

    Article  Google Scholar 

  76. Hochbaum AI, Fan R, He R, Yang P (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460

    Article  Google Scholar 

  77. Hannon J, Kodambaka S, Ross F, Tromp R (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440(7080):69–71

    Article  Google Scholar 

  78. Garnett EC, Liang W, Yang P (2007) Growth and electrical characteristics of platinum-nanoparticle-catalyzed silicon nanowires. Adv Mater 19(19):2946–2950

    Article  Google Scholar 

  79. Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, Lewis NS, Atwater HA (2007) Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91(10):103110

    Article  Google Scholar 

  80. Renard VT, Jublot M, Gergaud P, Cherns P, Rouchon D, Chabli A, Jousseaume V (2009) Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat Nanotechnol 4(10):654–657

    Article  Google Scholar 

  81. Putnam MC, Turner-Evans DB, Kelzenberg MD, Boettcher SW, Lewis NS, Atwater HA (2009) 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth. Appl Phys Lett 95:163116

    Article  Google Scholar 

  82. Wang Y, Schmidt V, Senz S, Gösele U (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189

    Article  Google Scholar 

  83. Wacaser BA, Reuter MC, Khayyat MM, Wen C-Y, Haight R, Guha S, Ross FM (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301

    Article  Google Scholar 

  84. Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee S-T (1999) Si nanowires grown from silicon oxide. Chem Phys Lett 299(2):237–242

    Article  Google Scholar 

  85. Peng K, Zhu J (2003) Simultaneous gold deposition and formation of silicon nanowire arrays. J Electroanal Chem 558:35–39

    Article  Google Scholar 

  86. Peng K, Zhu J (2004) Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim Acta 49(16):2563–2568

    Article  Google Scholar 

  87. Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S (2006) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12(30):7942–7947

    Article  Google Scholar 

  88. Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16(3):387–394

    Article  Google Scholar 

  89. Peng K, Xu Y, Wu Y, Yan Y, Lee S-T, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1(11):1062–1067

    Article  Google Scholar 

  90. Peng K, Wang X, Lee S-T (2008) Silicon nanowire array photoelectrochemical solar cells. Appl Phys Lett 92(16):163103

    Article  Google Scholar 

  91. Lam HY, Zangmeister CD, Kushmerick JG (2007) Origin of discrepancies in inelastic electron tunneling spectra of molecular junctions. Phys Rev Lett 98(20):206803

    Article  Google Scholar 

  92. Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8(10):781–792

    Article  Google Scholar 

  93. Macdonald JE, Bar Sadan M, Houben L, Popov I, Banin U (2010) Hybrid nanoscale inorganic cages. Nat Mater 9(10):810–815

    Google Scholar 

  94. Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube-nanocrystal heterostructures. Chem Soc Rev 38(4):1076–1098

    Article  Google Scholar 

  95. Wada A, Tamaru S, Ikeda M, Hamachi I (2009) MCM-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance. J Am Chem Soc 131(14):5321–5330

    Google Scholar 

  96. Su S, Wei X, Zhong Y, Guo Y, Su Y, Huang Q, Lee S-T, Fan C, He Y (2012) Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano 6(3):2582–2590

    Article  Google Scholar 

  97. Peng K-Q, Wang X, Wu X-L, Lee S-T (2009) Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett 9(11):3704–3709

    Article  Google Scholar 

  98. Peng K-Q, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215

    Article  Google Scholar 

  99. Peng Z, Hu H, Utama MIB, Wong LM, Ghosh K, Chen R, Wang S, Shen Z, Xiong Q (2010) Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping. Nano Lett 10(10):3940–3947

    Article  Google Scholar 

  100. He Y, Su S, Xu T, Zhong Y, Zapien JA, Li J, Fan C, Lee S-T (2011) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6(2):122–130

    Article  Google Scholar 

  101. He Y, Zhong Y, Peng F, Wei X, Su Y, Su S, Gu W, Liao L, Lee S-T (2011) Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging. Angew Chem Int Ed 50:3080–3083

    Article  Google Scholar 

  102. Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22(48):5463–5467

    Article  Google Scholar 

  103. Su Y, Wei X, Peng F, Zhong Y, Lu Y, Su S, Xu T, Lee S-T, He Y (2012) Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett 12(4):1845–1850

    Article  Google Scholar 

  104. Park G-S, Kwon H, Kwak DW, Park SY, Kim M, Lee J-H, Han H, Heo S, Li XS, Lee JH (2012) Full surface embedding of gold clusters on silicon nanowires for efficient capture and photothermal therapy of circulating tumor cells. Nano Lett 12(3):1638–1642

    Article  Google Scholar 

  105. Zhang X, Brynda M, Britt RD, Carroll EC, Larsen DS, Louie AY, Kauzlarich SM (2007) Synthesis and characterization of manganese-doped silicon nanoparticles: bifunctional paramagnetic-optical nanomaterial. J Am Chem Soc 129(35):10668–10669

    Article  Google Scholar 

  106. Erogbogbo F, Yong K-T, Hu R, Law W-C, Ding H, Chang C-W, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4(9):5131–5138

    Article  Google Scholar 

  107. Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132(6):2016–2023

    Article  Google Scholar 

  108. Sato K, Yokosuka S, Takigami Y, Hirakuri K, Fujioka K, Manome Y, Sukegawa H, Iwai H, Fukata N (2011) Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility. J Am Chem Soc 133(46):18626–18633

    Article  Google Scholar 

  109. Singh MP, Atkins TM, Muthuswamy E, Kamali S, Tu C, Louie AY, Kauzlarich SM (2012) Development of iron-doped silicon nanoparticles as bimodal imaging agents. ACS Nano 6(6):5596–5604

    Article  Google Scholar 

  110. Shi W, Zeng H, Sahoo Y, Ohulchanskyy TY, Ding Y, Wang ZL, Swihart M, Prasad PN (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6(4):875–881

    Article  Google Scholar 

  111. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129(13):3848–3856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, Y., Su, Y. (2014). Silicon Nanostructures. In: Silicon Nano-biotechnology. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54668-6_2

Download citation

Publish with us

Policies and ethics