Waste Mechanical Energy Harvesting (II): Nanopiezoelectric Effect

  • Ling Bing Kong
  • Tao Li
  • Huey Hoon Hng
  • Freddy Boey
  • Tianshu Zhang
  • Sean Li
Part of the Lecture Notes in Energy book series (LNEN, volume 24)


Recently, a new type of mechanical waste energy harvester—nanogenertor, based on nanopiezoelectric effect, has emerged. Nanogenerator is a device facilitated with modern nanotechnologies that can be used to convert mechanical or thermal energy as produced by small-scale physical change into electricity.


Output Voltage Nanowire Array PVDF Nanofibers Piezoelectric Potential Triboelectric Nanogenerators 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  2. 2.
    F.R. Fan, Z.Q. Tian, Z.L. Zhong, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012)CrossRefGoogle Scholar
  4. 4.
    F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 64, 33–71 (2009)CrossRefGoogle Scholar
  6. 6.
    O. Dulub, L.A. Boatne, U. Diebold, STM study of the geometric and electronic structure of ZnO(0001)-Zn, ( 000ī)-O, ( 10ī0), and (1120) surfaces. Surf. Sci. 519, 201–217 (2002)Google Scholar
  7. 7.
    B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 67, 035403 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, N.M. Harrison, Stability of polar oxide surfaces. Phys. Rev. Lett. 86, 3811–3814 (2001)CrossRefGoogle Scholar
  9. 9.
    R.S. Yang, Y. Ding, Z.L. Wang, Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett. 4, 1309–1312 (2004)CrossRefGoogle Scholar
  10. 10.
    Y. Ding, X.Y. Kong, Z.L. Wang, Doping and planar defects in the formation of single-crystal ZnO nanorings. Phys. Rev. B 70, 235–408 (2004)Google Scholar
  11. 11.
    Y. Ding, Z.L. Wang, Structures of planar defects in ZnO nanobelts and nanowires. Micron 40, 335–342 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Z.L. Wang, Z.W. Pan, Z.R. Dai, Structures of oxide nanobelts and nanowires. Microsc. Microanal. 8, 467–474 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7, 26–33 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, Adv. Func. Mater. 12, 323–331 (2002)CrossRefGoogle Scholar
  15. 15.
    X.D. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 3, 423–426 (2004)CrossRefGoogle Scholar
  16. 16.
    X. D. Wang, J. H. Song, P. Li, J. H. Ryou, R. D. Dupuis, C.J. Summers and Z. L. Wang, Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates,J.Am. Chem. Soc., 127, 7920-7923 (2005)Google Scholar
  17. 17.
    J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides. J. Phys. Chem. B, 109, 9869–9872 (2005)Google Scholar
  18. 18.
    S.S. Lin, J.I. Hong, J.H. Song, Y. Zhu, H.P. He, Z. Xu, Y.G. Wei, Y. Ding, R.L. Snyder, Z.L. Wang, Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Lett. 9, 3877–3882 (2009)CrossRefGoogle Scholar
  19. 19.
    B. Weintraub, Y.L. Deng, Z.L. Wang, Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis. J. Phys. Chem. C 111, 10162–10165 (2007)CrossRefGoogle Scholar
  20. 20.
    B. Weintraub, Z. Zhou, Y. Li, Y.L. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2, 1573–1587 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Xu, C. Lao, B. Weintraub, Z.L. Wang, Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 23, 2072–2077 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Xu, Y.G. Wei, M. Kirkham, J. Liu, W.J. Mai, R.L. Snyder, Z.L. Wang, Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958–14959 (2008)CrossRefGoogle Scholar
  24. 24.
    T.Y. Liu, H.C. Liao, C.C. Lin, S.H. Hu, S.Y. Chen, Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 22, 5804–5809 (2006)CrossRefGoogle Scholar
  25. 25.
    S.A. Morin, F.F. Amos, S. Jin, Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J. Am. Chem. Soc. 129, 13776–13777 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Qin, R.S. Yang, Z.L. Wang, Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734–18736 (2008)CrossRefGoogle Scholar
  27. 27.
    D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z.L. Wang, S. Das, Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation. Adv. Funct. Mater. 20, 3484–3489 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, Z.L. Wang, Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 10, 3414–3419 (2010)CrossRefGoogle Scholar
  29. 29.
    Z.L. Wang, R.S. Yang, J. Zhou, Y. Qin, C. Xu, Y.F. Hu, S. Xu, Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng., R 70, 320–329 (2010)CrossRefGoogle Scholar
  30. 30.
    Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)CrossRefGoogle Scholar
  31. 31.
    Z.L. Wang, Nanogenerators for self-powered devices and systems (Georgia Institute of Technology, Atlanta, 2011)Google Scholar
  32. 32.
    Y.F. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)CrossRefGoogle Scholar
  33. 33.
    Y.F. Gao, Z.L. Wang, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1120 (2009)CrossRefGoogle Scholar
  34. 34.
    M.P. Lu, J.H. Song, M.Y. Lu, M.T. Chen, Y.F. Gao, L.F. Chen, Z.L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Zhou, P. Fei, Y.F. Gao, Y.D. Gu, J. Liu, G. Bao, Z.L. Wang, Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8, 2725–2730 (2008)CrossRefGoogle Scholar
  36. 36.
    Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 105, 113707 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Alexe, S. Senz, M.A. Schubert, D. Hesse, U. Gosele, Energy harvesting using nanowires? Adv. Mater. 20, 4021–4026 (2008)CrossRefGoogle Scholar
  38. 38.
    Alexe et al., Energy harvesting using piezoelectric nanowires-a correspondence on “Energy harvesting using nanowires?”Adv. Mater. 21, 1311–1315 (2009)Google Scholar
  39. 39.
    R.S. Yang, Y. Qin, C. Li, L.M. Dai, Z.L. Wang, Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 94, 022905 (2009)CrossRefGoogle Scholar
  40. 40.
    R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotech. 4, 34–39 (2009)CrossRefGoogle Scholar
  41. 41.
    Z.L. Wang, Oxide nanobelts and nanowires-growth, properties and applications. J. Nanosci. Nanotech. 8, 27–55 (2008)CrossRefGoogle Scholar
  42. 42.
    X.D. Wang, J.H. Song, Z.L. Wang, Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem. 17, 711–720 (2007)CrossRefGoogle Scholar
  43. 43.
    J.H. Song, J. Zhou, Z.L. Wang, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 6, 1622–1656 (2006)CrossRefGoogle Scholar
  44. 44.
    P.X. Gao, J.H. Song, J. Liu, Z.L. Wang, Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67–71 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Liu, P. Fei, J.H. Song, X.D. Wang, C.S. Lao, R. Tummala, Z.L. Wang, Carrier density and Schottky barrier on the performance of DC nanogenerator. Nano Lett. 8, 328–332 (2008)CrossRefGoogle Scholar
  46. 46.
    S.S. Lin, J.H. Song, Y.F. Lu, Z.L. Wang, Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Nanotechnology 20, 365703 (2009)CrossRefGoogle Scholar
  47. 47.
    X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-durrent nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRefGoogle Scholar
  48. 48.
    J. Liu, P. Fei, J. Zhou, R. Tummala, Z.L. Wang, Toward high output-power nanogenerator. Appl. Phys. Lett. 92, 173105 (2008)CrossRefGoogle Scholar
  49. 49.
    S. Xu, Y.G. Wei, J. Liu, R. Yang, Z.L. Wang, Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 8, 4027–4032 (2008)CrossRefGoogle Scholar
  50. 50.
    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotech. 5, 366–373 (2010)CrossRefGoogle Scholar
  51. 51.
    Y.F. Hu, L. Lin, Y. Zhang, Z.L. Wang, Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 24, 110–114 (2012)CrossRefGoogle Scholar
  52. 52.
    G. Zhu, A.C. Wang, Y. Liu, Y.S. Zhou, Z.L. Wang, Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12, 3086–3090 (2012)CrossRefGoogle Scholar
  53. 53.
    R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotech. 4, 34–39 (2009)CrossRefGoogle Scholar
  54. 54.
    R.S. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRefGoogle Scholar
  55. 55.
    Z. Li, G. Zhu, R.S. Yang, A.C. Wang, Z.L. Wang, Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534–2537 (2010)CrossRefGoogle Scholar
  56. 56.
    G. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151–3155 (2010)CrossRefGoogle Scholar
  57. 57.
    Y. Qin, X.D. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809 (2008)CrossRefGoogle Scholar
  58. 58.
    Z.T. Li, Z.L. Wang, Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 23, 84–89 (2011)CrossRefGoogle Scholar
  59. 59.
    Y.F. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)CrossRefGoogle Scholar
  60. 60.
    C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)CrossRefGoogle Scholar
  61. 61.
    Y.F. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-Powered System with Wireless Data Transmission. Nano Lett. 11(6), 2572–2577 (2011)CrossRefGoogle Scholar
  62. 62.
    M.B. Lee, J.H. Bae, J.H. Lee, C.S. Lee, S.H. Hong, Z.L. Wang, Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 4, 3359–3364 (2011)CrossRefGoogle Scholar
  63. 63.
    Y.F. Lin, J.H. Song, D. Yong, S.Y. Lu, Z.L. Wang, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20, 3127–3130 (2008)CrossRefGoogle Scholar
  64. 64.
    C.T. Huang, J.H. Song, W.F. Lee, Y. Ding, Z.Y. Gao, Y. Hao, L.J. Chen, Z.L. Wang, GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRefGoogle Scholar
  65. 65.
    C.T. Huang, J.H. Song, C.M. Tsai, W.F. Lee, D.H. Lien, Z.Y. Gao, Y. Hao, L.J. Chen, Z.L. Wang, Single-InN-nanowire nanogenerator with up to 1 V output voltage. Adv. Mater. 22, 4008–4013 (2010)CrossRefGoogle Scholar
  66. 66.
    T.D. Nguyen, J.M. Nagarah, Y. Qi, S.S. Nonnenmann, A.V. Morozov, S. Li, C.B. Arnold, M.C. McAlpine, Wafer-scale nanopatterning and translation into high-performance piezoelectric nanowires. Nano Lett. 10, 4595–4599 (2010)CrossRefGoogle Scholar
  67. 67.
    Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and ptretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011)CrossRefGoogle Scholar
  68. 68.
    J. Kwon, W. Seung, B.K. Sharma, S.W. Kim, J.H. Ahn, A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5, 8970–8975 (2012)CrossRefGoogle Scholar
  69. 69.
    L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, Z.L. Wang, Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett. 13, 91–94 (2013)CrossRefGoogle Scholar
  70. 70.
    K.I. Park, M. Lee, Y. Liu, S. Moon, G.T. Hwang, G. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang, K.J. Lee, Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRefGoogle Scholar
  71. 71.
    W. Wu, L. Chenga S. Bai, W. Dou, Q. Xu, Z. Wei, Y. Qin, Electrospinning lead-free 0.5Ba (Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J. Mater. Chem. A, 1, 7332–7338 (2013)Google Scholar
  72. 72.
    S. Kim, J.H. Lee, J. Lee, S.W. Kim, M.H. Kim, S. Park, H. Chung,Y.I. Kimand W. Kim, Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature, J. Am. Chem. Soc. 135, 6–9 (2013)Google Scholar
  73. 73.
    C. Chang, V.H. Tran, J. Wang, Y. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRefGoogle Scholar
  74. 74.
    B.J. Hansen, Y. Liu, R.S. Yang, Z.L. Wang, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4, 3647–3652 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ling Bing Kong
    • 1
  • Tao Li
    • 1
  • Huey Hoon Hng
    • 1
  • Freddy Boey
    • 1
  • Tianshu Zhang
    • 2
  • Sean Li
    • 2
  1. 1.School of Materials Science and Engineering, College of EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations