On Automation of OTS/CafeOBJ Method

  • Daniel Găină
  • Dorel Lucanu
  • Kazuhiro Ogata
  • Kokichi Futatsugi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8373)


The proof scores method is an interactive verification method in algebraic specification that combines manual proof planning and reduction (automatic inference by rewriting). The proof score approach to software verification coordinates efficiently human intuition and machine automation. We are interested in applying these ideas to transition systems, more concretely, in developing the so-called OTS/CafeOBJ method, a modelling, specification, and verification method of observational transition systems. In this paper we propose a methodology that aims at developing automatically proof scores according to the rules of an entailment system. The proposed deduction rules include a set of generic rules, which can be found in other proof systems as well, together with a set of rules specific to our working context. The methodology is exhibited on the example of the alternating bit protocol, where the unreliability of channels is faithfully specified.


Proof Strategy Ground Term Proof Tree Proof Rule Entailment Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr. Program. 67(1-2), 3–51 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bidoit, M., Hennicker, R., Kurz, A.: Observational logic, constructor-based logic, and their duality. Theor. Comput. Sci. 3(298), 471–510 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286(2), 197–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  5. 5.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing, vol. 6. World Scientific (1998)Google Scholar
  6. 6.
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theor. Comput. Sci. 285(2), 289–318 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Futatsugi, K.: Verifying Specifications with Proof Scores in CafeOBJ. In: ASE, pp. 3–10. IEEE Computer Society (2006)Google Scholar
  8. 8.
    Futatsugi, K., Goguen, J.A., Ogata, K.: Verifying Design with Proof Scores. In: Meyer, B., Woodcock, J. (eds.) Verified Software. LNCS, vol. 4171, pp. 277–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Futatsugi, K., Găină, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor. Comput. Sci. 464, 90–112 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Găină, D., Futatsugi, K.: Initial Semnatics in Logics with Constructors. J. Log. Comput (2013),
  11. 11.
    Găină, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based Inductive Theorem Prover. In: Heckel, R. (ed.) CALCO 2013. LNCS, vol. 8089, pp. 328–333. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Goguen, J.: Theorem Proving and Algebra (1994)Google Scholar
  13. 13.
    Goguen, J.A., Burstall, R.: Institutions: Abstract Model Theory for Specification and Programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goguen, J.A., Lin, K.: Behavioral Verification of Distributed Concurrent Systems with BOBJ. In: 3rd International Conference on Quality Software (QSIC), p. 216 (2003)Google Scholar
  15. 15.
    Goguen, J.A., Lin, K., Rosu, G.: Circular Coinductive Rewriting. In: ASE, pp. 123–132 (2000)Google Scholar
  16. 16.
    Goriac, E.-I., Lucanu, D., Roşu, G.: Automating Coinduction with Case Analysis. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 220–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Găină, D., Futatsugi, K., Ogata, K.: Constructor-based Logics. J. UCS 18(16), 2204–2233 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hendrix, J.D.: Decision Procedures for Equationally Based Reasoning. Technical Report, UIUC (2008)Google Scholar
  19. 19.
    Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A Behavioral Verification Tool based on Circular Coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Meseguer, J.: Order-Sorted Parameterization and Induction. In: Palsberg, J. (ed.) Mosses Festschrift. LNCS, vol. 5700, pp. 43–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Ogata, K., Futatsugi, K.: Flaw and modification of the iKP electronic payment protocols. Inf. Process. Lett. 86(2), 57–62 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ogata, K., Futatsugi, K.: Simulation-based Verification for Invariant Properties in the OTS/CafeOBJ Method. Electr. Notes Theor. Comput. Sci. 201, 127–154 (2008)CrossRefGoogle Scholar
  23. 23.
    Sannella, D., Tarlecki, A.: Specifications in an Arbitrary Institution. Inf. Comput. 76(2/3), 165–210 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Găină
    • 1
  • Dorel Lucanu
    • 2
  • Kazuhiro Ogata
    • 1
  • Kokichi Futatsugi
    • 1
  1. 1.Japan Advanced Institute of Science and Technology (JAIST)Japan
  2. 2.Alexandru Ioan Cuza UniversityRomania

Personalised recommendations