Skip to main content

PDE Methods for Two-Dimensional Neural Fields

  • Chapter
  • First Online:
Neural Fields

Abstract

We consider neural field models in both one and two spatial dimensions and show how for some coupling functions they can be transformed into equivalent partial differential equations (PDEs). In one dimension we find snaking families of spatially-localised solutions, very similar to those found in reversible fourth-order ordinary differential equations. In two dimensions we analyse spatially-localised bump and ring solutions and show how they can be unstable with respect to perturbations which break rotational symmetry, thus leading to the formation of complex patterns. Finally, we consider spiral waves in a system with purely positive coupling and a second slow variable. These waves are solutions of a PDE in two spatial dimensions, and by numerically following these solutions as parameters are varied, we can determine regions of parameter space in which stable spiral waves exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bär, M., Bangia, A., Kevrekidis, I.: Bifurcation and stability analysis of rotating chemical spirals in circular domains: boundary-induced meandering and stabilization. Phys. Rev. E 67(5), 056,126 (2003)

    Google Scholar 

  3. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68(13), 2090–2093 (1992)

    Article  Google Scholar 

  4. Beurle, R.L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. B: Biol. Sci. 240(669), 55–94 (1956)

    Article  Google Scholar 

  5. Beyn, W., Thümmler, V.: Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst. 3(2), 85–116 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blomquist, P., Wyller, J., Einevoll, G.: Localized activity patterns in two-population neuronal networks. Phys. D: Nonlinear Phenom. 206(3–4), 180–212 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bojak, I., Liley, D.T.J.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041,902 (2005). doi:10.1103/PhysRevE.71.041902. http://link.aps.org/doi/10.1103/PhysRevE.71.041902

  8. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45(3), 033,001 (2012). http://stacks.iop.org/1751-8121/45/i=3/a=033001

  9. Bressloff, P.C., Kilpatrick, Z.P.: Two-dimensional bumps in piecewise smooth neural fields with synaptic depression. SIAM J. Appl. Math. 71(2), 379–408 (2011). doi:10.1137/100799423. http://link.aip.org/link/?SMM/71/379/1

  10. Burke, J., Knobloch, E.: Homoclinic snaking: structure and stability. Chaos 17(3), 037,102 (2007). doi:10.1063/1.2746816. http://link.aip.org/link/?CHA/17/037102/1

  11. Champneys, A.: Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Phys. D: Nonlinear Phenom. 112(1–2), 158–186 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93(2), 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coombes, S., Owen, M.: Bumps, breathers, and waves in a neural network with spike frequency adaptation. Phys. Rev. Lett. 94(14), 148,102 (2005)

    Article  Google Scholar 

  14. Coombes, S., Schmidt, H., Bojak, I.: Interface dynamics in planar neural field models. J. Math. Neurosci. 2(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  15. Coombes, S., Venkov, N., Shiau, L., Bojak, I., Liley, D., Laing, C.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76(5), 051,901 (2007)

    Article  MathSciNet  Google Scholar 

  16. Doubrovinski, K., Herrmann, J.: Stability of localized patterns in neural fields. Neural comput. 21(4), 1125–1144 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elvin, A.: Pattern formation in a neural field model. Ph.D. thesis, Massey University, New Zealand (2008)

    Google Scholar 

  18. Elvin, A., Laing, C., McLachlan, R., Roberts, M.: Exploiting the Hamiltonian structure of a neural field model. Phys. D: Nonlinear Phenom. 239(9), 537–546 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1998)

    Article  Google Scholar 

  20. Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137–150 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Faye, G., Rankin, J., Chossat, P.: Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis. J. Math. Biol. 66(6), 1303–1338 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Folias, S.E.: Nonlinear analysis of breathing pulses in a synaptically coupled neural network. SIAM J. Appl. Dyn. Syst. 10, 744–787 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Folias, S., Bressloff, P.: Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst. 3(3), 378–407 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Folias, S.E., Bressloff, P.C.: Breathers in two-dimensional neural media. Phys. Rev. Lett. 95, 208,107 (2005). doi:10.1103/PhysRevLett.95.208107. http://link.aps.org/doi/10.1103/PhysRevLett.95.208107

  25. Griffith, J.: A field theory of neural nets: I: derivation of field equations. Bull. Math. Biol. 25, 111–120 (1963)

    MATH  MathSciNet  Google Scholar 

  26. Guo, Y., Chow, C.C.: Existence and stability of standing pulses in neural networks: I. Existence. SIAM J. Appl. Dyn. Syst. 4, 217–248 (2005). doi:10.1137/040609471. http://link.aip.org/link/?SJA/4/217/1

  27. Huang, X., Troy, W., Yang, Q., Ma, H., Laing, C., Schiff, S., Wu, J.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24(44), 9897 (2004)

    Article  Google Scholar 

  28. Huang, X., Xu, W., Liang, J., Takagaki, K., Gao, X., Wu, J.Y.: Spiral wave dynamics in neocortex. Neuron 68(5), 978–990 (2010)

    Article  Google Scholar 

  29. Hutt, A., Rougier, N.: Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields. Phys. Rev. E 82, 055,701 (2010). doi:10.1103/PhysRevE.82.055701. http://link.aps.org/doi/10.1103/PhysRevE.82.055701

  30. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996). doi:10.1103/PhysRevLett.77.960. http://link.aps.org/doi/10.1103/PhysRevLett.77.960

  31. Kilpatrick, Z., Bressloff, P.: Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J. Comput. Neurosci. 28, 193–209 (2010)

    Article  MathSciNet  Google Scholar 

  32. Laing, C.: Spiral waves in nonlocal equations. SIAM J. Appl. Dyn. Syst. 4(3), 588–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Laing, C., Coombes, S.: The importance of different timings of excitatory and inhibitory pathways in neural field models. Netw. Comput. Neural Syst. 17(2), 151–172 (2006)

    Article  Google Scholar 

  34. Laing, C., Glendinning, P.: Bifocal homoclinic bifurcations. Phys. D: Nonlinear Phenom. 102(1–2), 1–14 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Laing, C., Troy, W.: PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst. 2(3), 487–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Laing, C., Troy, W., Gutkin, B., Ermentrout, G.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math. 63, 62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Liley, D., Cadusch, P., Dafilis, M.: A spatially continuous mean field theory of electrocortical activity. Netw. Comput. Neural Syst. 13(1), 67–113 (2002)

    Article  MATH  Google Scholar 

  38. Owen, M., Laing, C., Coombes, S.: Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J. Phys. 9, 378 (2007)

    Article  Google Scholar 

  39. Pinto, D., Ermentrout, G.: Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math. 62(1), 206–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pinto, D., Ermentrout, G.: Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math. 62(1), 226–243 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 13(2), 55–80 (1973)

    MATH  Google Scholar 

  42. Woods, P., Champneys, A.: Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation. Phys. D: Nonlinear Phenom. 129(3–4), 147–170 (1999). doi:10.1016/S0167-2789(98)00309-1. http://www.sciencedirect.com/science/article/pii/S0167278998003091

  43. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16(6), 2112–2126 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laing, C.R. (2014). PDE Methods for Two-Dimensional Neural Fields. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_5

Download citation

Publish with us

Policies and ethics