Neural Fields pp 367-392 | Cite as

Neural Field Modelling of the Electroencephalogram: Physiological Insights and Practical Applications

  • David T. J. LileyEmail author


The aim of this chapter is to outline a mean field approach to modelling brain activity that has been particularly successful in articulating the genesis of rhythmic electroencephalographic activity in the mammalian brain. In addition to being able to provide a physiologically consistent explanation for the genesis of the alpha rhythm, as well as expressing an array of complex dynamical phenomena that may be of relevance to understanding cognition , the model is also capable of accounting for many of the macroscopic electroencephalographic effects associated with anaesthetic action, a feature often missing in similar formulations. This chapter will then conclude with an example of how the physiological insights afforded by this mean field modelling approach can be translated into improved methods for the clinical monitoring of depth of anaesthesia.


Alpha Rhythm Alpha Band Anaesthetic Action Saddle Node Inhibitory Postsynaptic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adrian, E., Matthews, B.: The berger rhythm, potential changes from the occipital lobe in man. Brain 57, 355–385 (1934)CrossRefGoogle Scholar
  2. 2.
    Alkire, M.T.: Probing the mind: anesthesia and neuroimaging. Clin. Pharmacol. Ther. 84(1), 149–152 (2008)CrossRefGoogle Scholar
  3. 3.
    Alkire, M.T., Haier, R.J., Barker, S.J., Shah, N.K., Wu, J.C., Kao, Y.J.: Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82(2), 393–403 (1995)CrossRefGoogle Scholar
  4. 4.
    Amari, S.: Homogeneous nets of neuron-like elements. Biol. Cybern. 17, 211–220 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Andersen, P., Andersson, S.: Physiological Basis of the Alpha Rhythm. Appelton-Century-Crofts, New York (1968)Google Scholar
  6. 6.
    Baker, F.C., Colrain, I.M.: Daytime sleepiness, psychomotor performance, waking EEG spectra and evoked potentials in women with severe premenstrual syndrome. J. Sleep Res. 19(1 Pt 2), 214–227 (2010)CrossRefGoogle Scholar
  7. 7.
    Banks, M.I., Pearce, R.A.: Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonging effects. Anesthesiology 90(1), 120–134 (1999)CrossRefGoogle Scholar
  8. 8.
    Barth, A.L., Poulet, J.F.: Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35(6), 345–355 (2012)CrossRefGoogle Scholar
  9. 9.
    Becker, D., Creutzfeldt, O.D., Schwibbe, M., Wuttke, W.: Changes in physiological, EEG and psychological parameters in women during the spontaneous menstrual cycle and following oral contraceptives. Psychoneuroendocrinology 7(1), 75–90 (1982)Google Scholar
  10. 10.
    Beurle, R.: Properties of a mass of cells capable of regenerating pulses. Phil. Trans. R. Soc. B 240, 55–94 (1956)CrossRefGoogle Scholar
  11. 11.
    Bojak, I., Liley, D.: Modeling the effects of anesthesia on the electroencephalogram. Phys. Rev. E 71, 041902 (2005)CrossRefGoogle Scholar
  12. 12.
    Borst, J.G.: The low synaptic release probability in vivo. Trends Neurosci. 33(6), 259–266 (2010)CrossRefGoogle Scholar
  13. 13.
    Braitenberg, V., Schüz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer, New York (1998)Google Scholar
  14. 14.
    Bruhn, J., Myles, P.S., Sneyd, R., Struys, M.M.: Depth of anaesthesia monitoring: what’s available, what’s validated and what’s next? Br. J. Anaesth. 97(1), 85–94 (2006)CrossRefGoogle Scholar
  15. 15.
    Buente, D., Frascoli, F., Liley, D.: Complex dynamics for a reduced model of human eeg: implications for the physiological basis of brain activity. BMC Neurosci. 12, 198 (2011)CrossRefGoogle Scholar
  16. 16.
    Canavier, C.C., Baxter, D.A., Clark, J.W., Byrne, J.H.: Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol. 69(6), 2252–2257 (1993)Google Scholar
  17. 17.
    Caton, R.: The electric currents of the brain. Br. Med. J. 2, 278 (1875)Google Scholar
  18. 18.
    Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N., Kopell, N.J.: Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc. Natl. Acad. Sci. U.S.A. 107(52), 22665–22670 (2010)CrossRefGoogle Scholar
  19. 19.
    Creutzfeldt, O.D., Arnold, P.M., Becker, D., Langenstein, S., Tirsch, W., Wilhelm, H., Wuttke, W.: EEG changes during spontaneous and controlled menstrual cycles and their correlation with psychological performance. Electroencephalogr. Clin. Neurophysiol. 40(2), 113–131 (1976)CrossRefGoogle Scholar
  20. 20.
    Dafilis, M., Frascoli, F., Cadusch, P., Liley, D.: Chaos and generalised multistability in a mesoscopic model of the electroencephalogram. Physica D 13, 1056–1060 (2009)CrossRefGoogle Scholar
  21. 21.
    David, O., Kiebel, S., Harrison, L., Mattout, J., Kilner, J., Friston, K.: Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 30, 1255–1272 (2006)CrossRefGoogle Scholar
  22. 22.
    Deco, G., Jirsa, V., Robinson, P., Breakspear, M., Friston, K.: The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008)CrossRefGoogle Scholar
  23. 23.
    De-Miguel, F.F., Fuxe, K.: Extrasynaptic neurotransmission as a way of modulating neuronal functions. Front. Physiol. 3, 16 (2012)CrossRefGoogle Scholar
  24. 24.
    Franks, N.P.: General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386 (2008)CrossRefGoogle Scholar
  25. 25.
    Frascoli, F., van Veen, L., Bojak, I., Liley, D.: Metabifurcation analysis of a mean field model of the cortex. Physica D 240, 949–62 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Freeman, W.: Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior Through the EEG, 1st edn. Academic, New York (1975). Also electronic edn.: (2004)
  27. 27.
    Freyer, F., Aquino, K., Robinson, P.A., Ritter, P., Breakspear, M.: Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J. Neurosci. 29(26), 8512–8524 (2009)CrossRefGoogle Scholar
  28. 28.
    Freyer, F., Roberts, J.A., Becker, R., Robinson, P.A., Ritter, P., Breakspear, M.: Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31(17), 6353–6361 (2011)CrossRefGoogle Scholar
  29. 29.
    Fries, P.: Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009)CrossRefGoogle Scholar
  30. 30.
    Fritschy, J.M., Mohler, H.: GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359(1), 154–194 (1995)CrossRefGoogle Scholar
  31. 31.
    Giaume, C., Koulakoff, A., Roux, L., Holcman, D., Rouach, N.: Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 11, 87–99 (2010)CrossRefGoogle Scholar
  32. 32.
    Gloor, P.: Hans Berger on the electroencephalogram of man. Electroencephalogr. Clin. Neurophysiol. S28, 350 (1969)Google Scholar
  33. 33.
    Hosie, A.M., Clarke, L., da Silva, H., Smart, T.G.: Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 56(1), 149–154 (2009)CrossRefGoogle Scholar
  34. 34.
    Hutt, A. (ed.): Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Springer Series in Computational Neuroscience. Springer, New York (2011)Google Scholar
  35. 35.
    Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    Jeleazcov, C., Fechner, J., Schwilden, H.: Electroencephalogram monitoring during anesthesia with propofol and alfentanil: the impact of second order spectral analysis. Anesth. Analg. 100(5), 1365–1369 (2005)CrossRefGoogle Scholar
  37. 37.
    Jirsa, V., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)CrossRefGoogle Scholar
  38. 38.
    Lam, D.W., Reynolds, J.N.: Modulatory and direct effects of propofol on recombinant GABAA receptors expressed in xenopus oocytes: influence of alpha- and gamma2-subunits. Brain Res. 784(1–2), 179–187 (1998)CrossRefGoogle Scholar
  39. 39.
    Langsjo, J.W., Alkire, M.T., Kaskinoro, K., Hayama, H., Maksimow, A., Kaisti, K.K., Aalto, S., Aantaa, R., Jaaskelainen, S.K., Revonsuo, A., Scheinin, H.: Returning from oblivion: imaging the neural core of consciousness. J. Neurosci. 32(14), 4935–4943 (2012)CrossRefGoogle Scholar
  40. 40.
    Liley, D., Cadusch, P., Wright, J.: A continuum theory of electro-cortical activity. Neurocomputing 26–27, 795–800 (1999)CrossRefGoogle Scholar
  41. 41.
    Liley, D., Cadusch, P., Dafilis, M.: A spatially continuous mean field theory of electrocortical activity. Netw.: Comput. Neural Syst. 13, 67–113 (2002)Google Scholar
  42. 42.
    Liley, D., Cadusch, P., Dafilis, M.: Corrigendum. Netw.: Comput. Neural Syst. 14, 369 (2003)CrossRefGoogle Scholar
  43. 43.
    Liley, D., Cadusch, P., Gray, M., Nathan, P.: Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity. Phys. Rev. E 68, 051906 (2003)CrossRefGoogle Scholar
  44. 44.
    Liley, D., Sinclair, N., Lipping, T., Heyse, B., Vereecke, E., Struys, M.: Propofol and remifentanil differentially modulate frontal electroencephalographic activity. Anesthesiology 113, 1–13 (2010)CrossRefGoogle Scholar
  45. 45.
    Liley, D., Foster, B., Bojak, I.: A mesoscopic modelling approach to characterising anaesthetic action on brain electrical activity. In: Hutt, A. (ed.) Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Springer Series in Computational Neuroscience, pp. 139–66. Springer, New York (2011)CrossRefGoogle Scholar
  46. 46.
    Liley, D., Foster, B., Bojak, I.: Co-operative populations of neurons: mean field models of mesoscopic brain activity. In: Le Novère, N. (ed.) Computational Systems Neurobiology, pp. 317–64. Springer, New York (2012)CrossRefGoogle Scholar
  47. 47.
    Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)CrossRefGoogle Scholar
  48. 48.
    Lopes da Silva, F.: Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: Niedermeyer, E., Lopes da Silva, F. (eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp. 85–106, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  49. 49.
    Maclver, M.B., Mikulec, A.A., Amagasu, S.M., Monroe, F.A.: Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 85(4), 823–834 (1996)CrossRefGoogle Scholar
  50. 50.
    Miller, K.D., Pinto, D.J., Simons, D.J.: Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11(4), 488–497 (2001)CrossRefGoogle Scholar
  51. 51.
    Mohler, H., Fritschy, J.M., Rudolph, U.: A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300(1), 2–8 (2002)CrossRefGoogle Scholar
  52. 52.
    Mozzachiodi, R., Byrne, J.H.: More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends Neurosci. 33(1), 17–26 (2010)CrossRefGoogle Scholar
  53. 53.
    Niedermyer, N.: The normal EEG of the waking adult. In: Niedermeyer, E., Lopes da Silva, F. (eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp. 167–192, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  54. 54.
    Niedermeyer, E.: The burst-suppression electroencephalogram. Am. J. Electroneurodiagnostic Technol. 49(4), 333–341 (2009)Google Scholar
  55. 55.
    Niedermeyer, E., Lopes da Silva, F. (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  56. 56.
    Nunez, P.: The brain wave equation: a model for the EEG. Math. Biosci. 21, 279–297 (1974)CrossRefzbMATHGoogle Scholar
  57. 57.
    Nunez, P., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG, 2nd edn. Oxford University Press, New York (2005)Google Scholar
  58. 58.
    Nutt, D.: GABAA receptors: subtypes, regional distribution, and function. J. Clin. Sleep Med. 2(2), 7–11 (2006)Google Scholar
  59. 59.
    Olsen, R.W., Sieghart, W.: International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60(3), 243–260 (2008)Google Scholar
  60. 60.
    Partadiredja, G., Miller, R., Oorschot, D.: The number, size, and type of axons in rat subcortical white matter on left and right sides: a stereological, ultrastructural study. J. Neurocytol. 32, 1165–1179 (2003)CrossRefGoogle Scholar
  61. 61.
    Pitot, M., Gastaut, H.: [Electroencephalographic modifications during the estrus cycle]. Rev. Neurol. (Paris) 89(5), 427–430 (1953)Google Scholar
  62. 62.
    Reddy, D.S.: Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 186, 113–137 (2010)CrossRefGoogle Scholar
  63. 63.
    Regan, D.: Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier, New York (1989)Google Scholar
  64. 64.
    Ritchie, J.: Physiology of axons. In: Waxman, S., Kocsis, J., Stys, P. (eds.) The Axon: Structure, Function and Pathophysiology, pp. 68–96. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  65. 65.
    Robinson, P., Rennie, C., Wright, J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)CrossRefGoogle Scholar
  66. 66.
    Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C.: Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum. Brain Mapp. 23(1), 53–72 (2004)CrossRefGoogle Scholar
  67. 67.
    Rudolph, U., Antkowiak, B.: Molecular and neuronal substrates for general anaesthetics. Nat. Rev. Neurosci. 5, 709–720 (2004)CrossRefGoogle Scholar
  68. 68.
    Sherman, S., Guillery, R.: Exploring the thalamus and its role in cortical function. MIT, Cambridge (2005)Google Scholar
  69. 69.
    Sohl, G., Maxeiner, S., Willecke, K.: Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6(3), 191–200 (2005)CrossRefGoogle Scholar
  70. 70.
    Stam, C.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)CrossRefGoogle Scholar
  71. 71.
    Stam, C., Pijn, J., Suffczyński, P., Lopes da Silva, P.: Dynamics of the human alpha rhythm: evidence for non-linearity? Clin. Neurophysiol. 110, 1801–1813 (1999)Google Scholar
  72. 72.
    Steyn-Ross, D., Steyn-Ross, M., Sleigh, J., Wilson, M.: Progress in modelling EEG effects of general anesthesia: biphasic response and hysteresis. In: Hutt, A. (ed.) Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Springer Series in Computational Neuroscience, pp. 167–94. Springer, New York (2011)CrossRefGoogle Scholar
  73. 73.
    Stys, P.K.: The axo-myelinic synapse. Trends Neurosci. 34(8), 393–400 (2011)CrossRefGoogle Scholar
  74. 74.
    Terzuolo, C.A., Bullock, T.H.: Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc. Natl. Acad. Sci. U.S.A. 42(9), 687–694 (1956)CrossRefGoogle Scholar
  75. 75.
    van Veen, L., Liley, D.: Chaos via Shilnikov’s saddle-node bifurcation in a theory of the electroencephalogram. Phys. Rev. Lett. 97, 208101 (2006)CrossRefGoogle Scholar
  76. 76.
    Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P.: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15(9), 1499–1508 (2002)CrossRefGoogle Scholar
  77. 77.
    Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model neuron. Biophys. J. 12, 1–24 (1972)CrossRefGoogle Scholar
  78. 78.
    Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Brain and Psychological Sciences Research CentreSwinburne University of TechnologyHawthornAustralia

Personalised recommendations