Differentially Private Smart Metering with Battery Recharging

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8247)

Abstract

The energy industry has recently begun using smart meters to take fine-grained readings of energy usage. These smart meters enable flexible time-of-use billing, forecasting, and demand response, but they also raise serious user privacy concerns. We propose a novel technique for provably hiding sensitive power consumption information in the overall power consumption stream. Our technique relies on a rechargeable battery that is connected to the household’s power supply. This battery is used to modify the household’s power consumption by adding or subtracting noise (i.e., increasing or decreasing power consumption), in order to establish strong privacy guarantees in the sense of differential privacy. To achieve these privacy guarantees in realistic settings, we first investigate the influence of, and the interplay between, capacity and throughput bounds that batteries face in reality. We then propose an integrated method based on noise cascading that allows for recharging the battery on-the-fly so that differential privacy is retained, while adhering to capacity and throughput constraints, and while keeping the additional consumption of energy induced by our technique to a minimum.

Keywords

Stake 

References

  1. 1.
    Energy Independence and Security Act of 2007. One Hundred Tenth Congress of the United States of America (2007)Google Scholar
  2. 2.
    Directive 2009/72/EC of the European Parliament and of the Council. Official Journal of the European Union (2009)Google Scholar
  3. 3.
    Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Acs, G., Castelluccia, C., Lecat, W.: Protecting against physical resource monitoring. In: Proceedings of 10th Annual ACM Workshop on Privacy in the Electronic Society (WPES), pp. 23–32. ACM (2011)Google Scholar
  5. 5.
    Anderson, R., Fuloria, S.: On the security economics of electricity metering. In: Workshop on the Economics of Information Security (WEIS) (2010)Google Scholar
  6. 6.
    Anderson, R., Fuloria, S.: Who controls the off switch? In: Proceedings of the 1st IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 96–101. IEEE Press (2010)Google Scholar
  7. 7.
    Backes, M., Meiser, S.: Differentially private smart metering with battery recharging. Technical report, Saarland University. http://eprint.iacr.org/2012/183 (Online)
  8. 8.
    Baranski, M., Voss, J.: Detecting patterns of appliances from total load data using a dynamic programming approach. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM), pp. 327–330. IEEE Press (2004)Google Scholar
  9. 9.
    Cavoukian, A., Polonetsky, J., Wolf, C.: Smartprivacy for the smart grid: embedding privacy into the design of electricity conservation. Identity Inf. Soc. 3, 275–294 (2010)CrossRefGoogle Scholar
  10. 10.
    Cuijpers, C.: No to mandatory smart metering: does not equal privacy. http://vortex.uvt.nl/TILTblog/?p=54 (Online)
  11. 11.
    Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 148–162. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Greveler, U., Justus, B., Loehr, D.: Hintergrund und experimentelle Ergebnisse zum Thema Smart Meter und Datenschutz. Technical report, Fachhochschule Münster (2011)Google Scholar
  16. 16.
    Hart, G.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  17. 17.
    Hubert Chan, T.-H., Shi, E., Song, D.: Private and continual release of statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 405–417. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Lam, H., Fung, G., Lee, W.: A novel method to construct taxonomy electrical appliances based on load signatures. IEEE Trans. Consum. Electron. 53(2), 653–660 (2007)CrossRefGoogle Scholar
  20. 20.
    Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.: Power signature analysis. IEEE Power Energy Mag. 1(2), 56–63 (2003)CrossRefGoogle Scholar
  21. 21.
    McLaughlin, S., McDaniel, P., Aiello, W.: Protecting consumer privacy from electric load monitoring. In: Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS), pp. 87–98. ACM (2011)Google Scholar
  22. 22.
    Merritt, R.: Stimulus: DoE readies \(\$ 4.3\) billion for smart grid. EE Times (2009)Google Scholar
  23. 23.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building (BuildSys), pp. 61–66. ACM (2010)Google Scholar
  24. 24.
    T. S. G. I. Panel. Cyber security strategy and requirements. Technical report 7628, National Institute of Standards and TechnologyGoogle Scholar
  25. 25.
    Quinn, E.L.: Privacy and the new energy infrastructure. Soc. Sci. Res. Netw. 09, 1995–2008 (2009)Google Scholar
  26. 26.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 International Conference on Management of Data (SIGMOD), pp. 735–746. ACM (2010)Google Scholar
  27. 27.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society (WPES), pp. 49–60. ACM (2011)Google Scholar
  28. 28.
    Shi, E., Chan, T.-H.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings of the 18th Annual Network & Distributed System Security Symposium (NDSS) (2011)Google Scholar
  29. 29.
    Varodayan, D., Khisti, A.: Smart meter privacy using a rechargeable battery: minimizing the rate of information leakage. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for IT-Security, Privacy and Accountability (CISPA)SaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany

Personalised recommendations