Skip to main content

Imaging Perception

  • Chapter
  • First Online:
MRI in Psychiatry
  • 2072 Accesses

Abstract

We engage the world through our senses. During perception, physical signals (e.g., sound waves) are converted into electrical signals in specialized receptors and conveyed to the brain where they are processed and synthesized. In this chapter, we describe how MRI can provide critical insights into this process at both cortical and subcortical levels. In particular, we highlight similarities and differences in perceptual processing between the different sensory modalities. First, we describe the parallel and hierarchical sensory pathways, with neural representations growing in complexity from simple (e.g., orientation, frequency) to more complex (e.g., faces, speech) features. Second, we look at cortical organization, focusing on topographical maps, which reflect the organization of the receptors on the sensory surfaces, as well as higher-order organization such as category selectivity. We also emphasize that perception is driven by both bottom-up (sensory driven) and top-down (internally generated) signals, integrating our prior knowledge and attention in shaping our current percepts. Finally, we discuss how perception is highly malleable and influenced by experience from development through adulthood and from short (seconds) to long (years) time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

Brodmann area

BOLD:

Blood oxygenation dependent

EPI:

Echoplanar imaging

FFA:

Fusiform face area

LGN:

Lateral geniculate nucleus

MVPA:

Multi-voxel pattern analysis

OTC:

Occipitotemporal cortex

PPA:

Parahippocampal place area

SVM:

Support vector machines

V1:

Primary visual cortex

V2:

Prestriate cortex

V3:

Extrastriate visual area V3

V4:

Extrastriate visual area V4

V5/MT:

Extrastriate visual area V5/MT (middle temporal)

References

  • Adrian E (1950) Sensory discrimination: with some recent evidence from the olfactory organ. Br Med Bull 6:330–332

    CAS  PubMed  Google Scholar 

  • Aguirre GK (2007) Continuous carry-over designs for fMRI. Neuroimage 35:1480–1494

    PubMed Central  PubMed  Google Scholar 

  • Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21:373–383

    CAS  PubMed  Google Scholar 

  • Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122(Pt 9):1613–1628

    PubMed  Google Scholar 

  • Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4(3):324–330

    CAS  PubMed  Google Scholar 

  • Amedi A, Raz N, Pianka P, Malach R, Zohary E (2003) Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6:758–766

    CAS  PubMed  Google Scholar 

  • Amedi A, Malach R, Pascual-Leone A (2005) Negative BOLD differentiates visual imagery and perception. Neuron 48:859–872

    CAS  PubMed  Google Scholar 

  • Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organization of human ventral visual cortex. J Neurosci 29:10638–10652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arichi T, Moraux A, Melendez A, Doria V, Groppo M, Merchant N, Combs S, Burdet E, Larkman DJ, Counsell SJ, Beckmann CF, Edwards AD (2010) Somatosensory cortical activation identified by functional MRI in preterm and term infants. Neuroimage 49:2063–2071

    CAS  PubMed  Google Scholar 

  • Arzi A, Sobel N (2011) Olfactory perception as a compass for olfactory neural maps. Trends Cogn Sci 15:537–545

    PubMed  Google Scholar 

  • Baker CI, Peli E, Knouf N, Kanwisher NG (2005) Reorganization of visual processing in macular degeneration. J Neurosci 25:614–618

    CAS  PubMed  Google Scholar 

  • Baker CI, Liu J, Wald LL, Kwong KK, Benner T, Kanwisher N (2007) Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci U S A 104:9087–9092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker CI, Dilks DD, Peli E, Kanwisher N (2008) Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vision Res 48:1910–1919

    PubMed Central  PubMed  Google Scholar 

  • Bandettini PA (2009) What’s new in neuroimaging methods? Ann N Y Acad Sci 1156:260–293

    PubMed Central  PubMed  Google Scholar 

  • Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS (1998) Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 39:410–416

    CAS  PubMed  Google Scholar 

  • Barton JJ, Cherkasova M (2003) Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology 61(2):220–225

    PubMed  Google Scholar 

  • Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD, Tufail A, Rubin GS, Cornelissen FW, Morland AB (2011) Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat Neurosci 14:649–655

    CAS  PubMed  Google Scholar 

  • Beauchamp MS, Laconte S, Yasar N (2009) Distributed representation of single touches in somatosensory and visual cortex. Hum Brain Mapp 30:3163–3171

    PubMed  Google Scholar 

  • Behrmann M, Winocur G, Moscovitch M (1992) Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature 359(6396):636–637

    CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ (2000) ‘What’, ‘where’ and ‘how’ in auditory cortex. Nat Neurosci 3:965–966

    CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ (2003) Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 14:2105–2109

    PubMed  Google Scholar 

  • Bensafi M, Sobel N, Khan RM (2007) Hedonic-specific activity in piriform cortex during odor imagery mimics that during odor perception. J Neurophysiol 98:3254–3262

    PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528

    CAS  PubMed  Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. D. Appleton-Century company, incorporated, New York

    Google Scholar 

  • Brants M, Wagemans J, Op de Beeck HP (2011) Activation of fusiform face area by Greebles is related to face similarity but not expertise. J Cogn Neurosci 23:3949–3958

    PubMed  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374

    CAS  PubMed  Google Scholar 

  • Briggs RW, Dy-Liacco I, Malcolm MP, Lee H, Peck KK, Gopinath KS, Himes NC, Soltysik DA, Browne P, Tran-Son-Tay R (2004) A pneumatic vibrotactile stimulation device for fMRI. Magn Reson Med 51:640–643

    PubMed  Google Scholar 

  • Brouwer GJ, Heeger DJ (2009) Decoding and reconstructing color from responses in human visual cortex. J Neurosci 29:13992–14003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunzeck N, Wuestenberg T, Lutz K, Heinze HJ, Jancke L (2005) Scanning silence: mental imagery of complex sounds. Neuroimage 26:1119–1127

    PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    CAS  PubMed  Google Scholar 

  • Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME (2002) Adaptive changes in early and late blind: a fMRI study of braille reading. J Neurophysiol 87:589–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlin JD, Calder AJ, Kriegeskorte N, Nili H, Rowe JB (2011) A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr Biol 21:1817–1821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson TA, Schrater P, He S (2003) Patterns of activity in the categorical representations of objects. J Cogn Neurosci 15:704–717

    PubMed  Google Scholar 

  • Cassia VM, Picozzi M, Kuefner D, Bricolo E, Turati C (2009) Holistic processing for faces and cars in preschool-aged children and adults: evidence from the composite effect. Dev Sci 12:236–248

    PubMed  Google Scholar 

  • Castriota-Scanderbeg A, Hagberg GE, Cerasa A, Committeri G, Galati G, Patria F, Pitzalis S, Caltagirone C, Frackowiak R (2005) The appreciation of wine by sommeliers: a functional magnetic resonance study of sensory integration. Neuroimage 25:570–578

    PubMed  Google Scholar 

  • Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919

    CAS  PubMed  Google Scholar 

  • Chen W, Zhu XH, Thulborn KR, Ugurbil K (1999) Retinotopic mapping of lateral geniculate nucleus in humans using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 96:2430–2434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    CAS  PubMed  Google Scholar 

  • Chevillet M, Riesenhuber M, Rauschecker JP (2011) Functional correlates of the anterolateral processing hierarchy in human auditory cortex. J Neurosci 31:9345–9352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciaramitaro VM, Mitchell JF, Stoner GR, Reynolds JH, Boynton GM (2011) Object-based attention to one of two superimposed surfaces alters responses in human early visual cortex. J Neurophysiol 105:1258–1265

    PubMed Central  PubMed  Google Scholar 

  • Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22:466–476

    PubMed  Google Scholar 

  • Collins CE, Leitch DB, Wong P, Kaas JH, Herculano-Houzel S (2013) Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains. Brain Struct Funct 218(3):805–816

    Google Scholar 

  • Conway BR, Moeller S, Tsao DY (2007) Specialized color modules in macaque extrastriate cortex. Neuron 56:560–573

    CAS  PubMed  Google Scholar 

  • Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19:261–270

    PubMed  Google Scholar 

  • Cox DD, Meier P, Oertelt N, DiCarlo JJ (2005) ‘Breaking’ position-invariant object recognition. Nat Neurosci 8:1145–1147

    CAS  PubMed  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    PubMed  Google Scholar 

  • Cynader M, Berman N (1972) Receptive-field organization of monkey superior colliculus. J Neurophysiol 35:187–201

    CAS  PubMed  Google Scholar 

  • Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31:14067–14075

    PubMed  Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115(2):107

    CAS  PubMed  Google Scholar 

  • De Araujo IET, Kringelbach ML, Rolls ET, Hobden P (2003) Representation of umami taste in the human brain. J Neurophysiol 90:313–319

    PubMed  Google Scholar 

  • De Araujo IE, Rolls ET, Velazco MI, Margot C, Cayeux I (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679

    PubMed  Google Scholar 

  • De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E (2008) Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43:44–58

    PubMed  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci U S A 93:13494–13499

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeWitt I, Rauschecker JP (2012) Phoneme and word recognition in the auditory ventral stream. Proc Natl Acad Sci U S A 109:E505–E514

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73:415–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–201, Discussion 201-139

    PubMed  Google Scholar 

  • Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M (2007) Human adult cortical reorganization and consequent visual distortion. J Neurosci 27:9585–9594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21

    CAS  PubMed  Google Scholar 

  • Doehrmann O, Naumer MJ, Volz S, Kaiser J, Altmann CF (2008) Probing category selectivity for environmental sounds in the human auditory brain. Neuropsychologia 46:2776–2786

    PubMed  Google Scholar 

  • Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    CAS  PubMed  Google Scholar 

  • Downing PE, Chan AW, Peelen MV, Dodds CM, Kanwisher N (2006) Domain specificity in visual cortex. Cereb Cortex 16:1453–1461

    CAS  PubMed  Google Scholar 

  • Dresel C, Parzinger A, Rimpau C, Zimmer C, Ceballos-Baumann AO, Haslinger B (2008) A new device for tactile stimulation during fMRI. Neuroimage 39:1094–1103

    PubMed  Google Scholar 

  • DuBois RM, Cohen MS (2000) Spatiotopic organization in human superior colliculus observed with fMRI. Neuroimage 12:63–70

    CAS  PubMed  Google Scholar 

  • Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39:647–660

    PubMed Central  PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2003) Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38:659–671

    CAS  PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2007) Tactile hyperacuity thresholds correlate with finger maps in primary somatosensory cortex (S1). Cereb Cortex 17:2878–2891

    PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811

    PubMed  Google Scholar 

  • Eldeghaidy S, Marciani L, McGlone F, Hollowood T, Hort J, Head K, Taylor AJ, Busch J, Spiller RC, Gowland PA, Francis ST (2011) The cortical response to the oral perception of fat emulsions and the effect of taster status. J Neurophysiol 105:2572–2581

    PubMed Central  PubMed  Google Scholar 

  • Ellis RJ, Norton AC, Overy K, Winner E, Alsop DC, Schlaug G (2012) Differentiating maturational and training influences on fMRI activation during music processing. Neuroimage 60:1902–1912

    PubMed Central  PubMed  Google Scholar 

  • Engel SA (2012) The development and use of phase-encoded functional MRI designs. Neuroimage 62:1195–1200

    PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    CAS  PubMed  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    CAS  PubMed  Google Scholar 

  • Espinosa JS, Stryker MP (2012) Development and plasticity of the primary visual cortex. Neuron 75:230–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4:1171–1173

    CAS  PubMed  Google Scholar 

  • Flor H, Nikolajsen L, Staehelin Jensen T (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881

    CAS  PubMed  Google Scholar 

  • Formisano E, Kim D-S, Di Salle F, van de Moortele P-F, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    CAS  PubMed  Google Scholar 

  • Formisano E, De Martino F, Bonte M, Goebel R (2008) “Who” is saying “what”? Brain-based decoding of human voice and speech. Science 322:970–973

    CAS  PubMed  Google Scholar 

  • Frank GK, Kaye WH, Carter CS, Brooks S, May C, Fissell K, Stenger VA (2003) The evaluation of brain activity in response to taste stimuli–a pilot study and method for central taste activation as assessed by event-related fMRI. J Neurosci Methods 131:99–105

    PubMed  Google Scholar 

  • Freeman J, Brouwer GJ, Heeger DJ, Merriam EP (2011) Orientation decoding depends on maps, not columns. J Neurosci 31:4792–4804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836

    PubMed Central  PubMed  Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20:226–241

    PubMed  Google Scholar 

  • Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23:9240–9245

    CAS  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2:568–573

    CAS  PubMed  Google Scholar 

  • Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3:191–197

    CAS  PubMed  Google Scholar 

  • Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16:129–135

    PubMed Central  PubMed  Google Scholar 

  • Gilaie-Dotan S, Harel A, Bentin S, Kanai R, Rees G (2012) Neuroanatomical correlates of visual car expertise. Neuroimage 62:147–153

    PubMed  Google Scholar 

  • Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JD, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10:512–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golarai G, Liberman A, Yoon JM, Grill-Spector K (2010) Differential development of the ventral visual cortex extends through adolescence. Front Hum Neurosci 3:80

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Castillo J, Olulade OA, Talavage TM (2011) Using functional MRI to study auditory comprehension. Imaging Med 4:137–143

    Google Scholar 

  • Gottfried JA (2010) Central mechanisms of odour object perception. Nat Rev Neurosci 11:628–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottfried JA, Winston JS, Dolan RJ (2006) Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49:467–479

    CAS  PubMed  Google Scholar 

  • Gotts S, Chow C, Martin A (2012) Repetition priming and repetition suppression: multiple mechanisms in need of testing. Cogn Neurosci 3:250–259

    PubMed  Google Scholar 

  • Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3:e27

    PubMed Central  PubMed  Google Scholar 

  • Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 107:293–321

    CAS  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    CAS  PubMed  Google Scholar 

  • Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    CAS  PubMed  Google Scholar 

  • Grill-Spector K, Knouf N, Kanwisher N (2004) The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 7:555–562

    CAS  PubMed  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    PubMed  Google Scholar 

  • Haase L, Cerf-Ducastel B, Buracas G, Murphy C (2007) On-line psychophysical data acquisition and event-related fMRI protocol optimized for the investigation of brain activation in response to gustatory stimuli. J Neurosci Methods 159:98–107

    PubMed  Google Scholar 

  • Harel A, Bentin S (2009) Stimulus type, level of categorization, and spatial-frequencies utilization: implications for perceptual categorization hierarchies. J Exp Psychol Hum Percept Perform 35:1264–1273

    PubMed Central  PubMed  Google Scholar 

  • Harel A, Gilaie-Dotan S, Malach R, Bentin S (2010) Top-down engagement modulates the neural expressions of visual expertise. Cereb Cortex 20:2304–2318

    PubMed Central  PubMed  Google Scholar 

  • Harel A, Kravitz DJ, Baker CI (2013) Deconstructing visual scenes in cortex: gradients of object and spatial layout information. Cereb Cortex 23:947–957

    PubMed Central  PubMed  Google Scholar 

  • Hasson U, Levy I, Behrmann M, Hendler T, Malach R (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–490

    CAS  PubMed  Google Scholar 

  • Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041

    CAS  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    CAS  PubMed  Google Scholar 

  • Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7:523–534

    CAS  PubMed  Google Scholar 

  • Haynes J-D, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438:496–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henson RN (2003) Neuroimaging studies of priming. Prog Neurobiol 70:53–81

    CAS  PubMed  Google Scholar 

  • Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B (2008) Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39:1585–1599

    PubMed Central  PubMed  Google Scholar 

  • Holmes G (1931) A contribution to the cortical representation of vision. Brain 54:470–479

    Google Scholar 

  • Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824

    CAS  PubMed  Google Scholar 

  • Howard JD, Plailly J, Grueschow M, Haynes J-D, Gottfried JA (2009) Odor quality coding and categorization in human posterior piriform cortex. Nat Neurosci 12:932–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. Neuroimage 34:1060–1073

    PubMed  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    CAS  PubMed  Google Scholar 

  • Humphries C, Liebenthal E, Binder JR (2010) Tonotopic organization of human auditory cortex. Neuroimage 50:1202–1211

    PubMed Central  PubMed  Google Scholar 

  • Illig KR, Haberly LB (2003) Odor-evoked activity is spatially distributed in piriform cortex. J Comp Neurol 457:361–373

    PubMed  Google Scholar 

  • Ingeholm JE, Dold GR, Pfeffer LE, Ide D, Goldstein SR, Johnson KO, Van Boven RW (2006) The Helix: a multi-modal tactile stimulator for human functional neuroimaging. J Neurosci Methods 155:217–223

    PubMed  Google Scholar 

  • James TW, Gauthier I (2006) Repetition-induced changes in BOLD response reflect accumulation of neural activity. Hum Brain Mapp 27:37–46

    PubMed  Google Scholar 

  • James TW, Kim S, Fisher JS (2007) The neural basis of haptic object processing. Can J Exp Psychol (Revue canadienne de psychologie expérimentale) 61(3):219

    Google Scholar 

  • Jancke L, Gaab N, Wustenberg T, Scheich H, Heinze HJ (2001) Short-term functional plasticity in the human auditory cortex: an fMRI study. Brain Res Cogn Brain Res 12:479–485

    CAS  PubMed  Google Scholar 

  • Johnson KO, Hsiao SS (1992) Neural mechanisms of tactual form and texture perception. Annu Rev Neurosci 15:227–250

    CAS  PubMed  Google Scholar 

  • Johnson BN, Sobel N (2007) Methods for building an olfactometer with known concentration outcomes. J Neurosci Methods 160:231–245

    PubMed  Google Scholar 

  • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107–112

    CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97:11793–11799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kami YN, Goto TK, Tokumori K, Yoshiura T, Kobayashi K, Nakamura Y, Honda H, Ninomiya Y, Yoshiura K (2008) The development of a novel automated taste stimulus delivery system for fMRI studies on the human cortical segregation of taste. J Neurosci Methods 172:48–53

    PubMed  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanwisher N, Dilks DD (2013) The functional organization of the ventral visual pathway in humans. In: Chalupa LM, Werner JS (eds) The new visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  • Karns CM, Dow MW, Neville HJ (2012) Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: a visual-somatosensory FMRI study with a double-flash illusion. J Neurosci 32:9626–9638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    CAS  PubMed  Google Scholar 

  • Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91:438–448

    PubMed  Google Scholar 

  • Katyal S, Zughni S, Greene C, Ress D (2010) Topography of covert visual attention in human superior colliculus. J Neurophysiol 104:3074–3083

    PubMed  Google Scholar 

  • Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452:352–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keil B, Alagappan V, Mareyam A, McNab JA, Fujimoto K, Tountcheva V, Triantafyllou C, Dilks DD, Kanwisher N, Lin W, Grant PE, Wald LL (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787

    PubMed Central  PubMed  Google Scholar 

  • Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11:417–428

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Takeda M, Hattori N, Fukunaga M, Sasabe T, Inoue N, Nagai Y, Sawada T, Sadato N, Watanabe Y (2004) Functional imaging of gustatory perception and imagery: “top-down” processing of gustatory signals. Neuroimage 23:1271–1282

    PubMed  Google Scholar 

  • Koelsch S, Fritz T, Schulze K, Alsop D, Schlaug G (2005) Adults and children processing music: an fMRI study. Neuroimage 25:1068–1076

    PubMed  Google Scholar 

  • Konkle T, Oliva A (2012) A real-world size organization of object responses in occipitotemporal cortex. Neuron 74:1114–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press, Oxford

    Google Scholar 

  • Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20:3310–3318

    CAS  PubMed  Google Scholar 

  • Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509

    CAS  PubMed  Google Scholar 

  • Kourtzi Z, Betts LR, Sarkheil P, Welchman AE (2005) Distributed neural plasticity for shape learning in the human visual cortex. PLoS Biol 3:e204

    PubMed Central  PubMed  Google Scholar 

  • Kourtzi Z, Augath M, Logothetis NK, Movshon JA, Kiorpes L (2006) Development of visually evoked cortical activity in infant macaque monkeys studied longitudinally with fMRI. Magn Reson Imaging 24:359–366

    PubMed  Google Scholar 

  • Kravitz DJ, Vinson LD, Baker CI (2008) How position dependent is visual object recognition? Trends Cogn Sci 12:114–122

    PubMed  Google Scholar 

  • Kravitz DJ, Kriegeskorte N, Baker CI (2010) High-level visual object representations are constrained by position. Cereb Cortex 20:2916–2925

    PubMed Central  PubMed  Google Scholar 

  • Kravitz DJ, Peng CS, Baker CI (2011a) Real-world scene representations in high-level visual cortex: it’s the spaces more than the places. J Neurosci 31:7322–7333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011b) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci U S A 104:20600–20605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegeskorte N, Mur M, Bandettini P (2008a) Representational similarity analysis - connecting the branches of systems neuroscience. Front Syst Neurosci 2:4

    PubMed Central  PubMed  Google Scholar 

  • Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008b) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    CAS  PubMed  Google Scholar 

  • Langers DRM, van Dijk P (2012) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22:2024–2038

    PubMed Central  PubMed  Google Scholar 

  • Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26:13128–13142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J Neurosci 30:7604–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Maunsell JH (2009) A normalization model of attentional modulation of single unit responses. PLoS One 4:e4651

    PubMed Central  PubMed  Google Scholar 

  • Lee SH, Kravitz DJ, Baker CI (2012) Disentangling visual imagery and perception of real-world objects. Neuroimage 59:4064–4073

    PubMed Central  PubMed  Google Scholar 

  • Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11:287–297

    CAS  PubMed  Google Scholar 

  • Levy LM, Henkin RI, Lin CS, Hutter A, Schellinger D (1999) Odor memory induces brain activation as measured by functional MRI. J Comput Assist Tomogr 23:487–498

    CAS  PubMed  Google Scholar 

  • Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539

    CAS  PubMed  Google Scholar 

  • Lewis JW, Brefczynski JA, Phinney RE, Janik JJ, DeYoe EA (2005) Distinct cortical pathways for processing tool versus animal sounds. J Neurosci 25:5148–5158

    CAS  PubMed  Google Scholar 

  • Lewis LB, Saenz M, Fine I (2010) Mechanisms of cross-modal plasticity in early-blind subjects. J Neurophysiol 104:2995–3008

    PubMed Central  PubMed  Google Scholar 

  • Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J Neurophysiol 69:1918–1929

    CAS  PubMed  Google Scholar 

  • Li W, Luxenberg E, Parrish T, Gottfried JA (2006) Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron 52:1097–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorig TS, Elmes DG, Zald DH, Pardo JV (1999) A computer-controlled olfactometer for fMRI and electrophysiological studies of olfaction. Behav Res Methods Instrum Comput 31:370–375

    CAS  PubMed  Google Scholar 

  • Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N (2001) Phantom movements and pain. An fMRI study in upper limb amputees. Brain 124:2268–2277

    CAS  PubMed  Google Scholar 

  • Mahon BZ, Caramazza A (2011) What drives the organization of object knowledge in the brain? Trends Cogn Sci 15:97–103

    PubMed Central  PubMed  Google Scholar 

  • Mahon BZ, Anzellotti S, Schwarzbach J, Zampini M, Caramazza A (2009) Category-specific organization in the human brain does not require visual experience. Neuron 63:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92:8135–8139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marciani L, Pfeiffer JC, Hort J, Head K, Bush D, Taylor AJ, Spiller RC, Francis S, Gowland PA (2006) Improved methods for fMRI studies of combined taste and aroma stimuli. J Neurosci Methods 158:186–194

    PubMed  Google Scholar 

  • Martin A (2006) Shades of Dejerine – forging a causal link between the visual word form area and reading. Neuron 50:173–175

    CAS  PubMed  Google Scholar 

  • Martin A (2009) Circuits in mind: the neural foundations for object concepts. In: Gazzaniga MS (ed) The cognitive neurosciences, 4th edn. MIT Press, Cambridge, pp 1031–1046

    Google Scholar 

  • Martinez A, Teder-Salejarvi W, Vazquez M, Molholm S, Foxe JJ, Javitt DC, Di Russo F, Worden MS, Hillyard SA (2006) Objects are highlighted by spatial attention. J Cogn Neurosci 18:298–310

    CAS  PubMed  Google Scholar 

  • Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA (2008) V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb Cortex 18:2483–2493

    PubMed Central  PubMed  Google Scholar 

  • McKone E, Crookes K, Jeffery L, Dilks DD (2012) A critical review of the development of face recognition: experience is less important than previously believed. Cogn Neuropsychol 29:174–212

    PubMed  Google Scholar 

  • Medina J, Coslett HB (2010) From maps to form to space: touch and the body schema. Neuropsychologia 48:645–654

    PubMed Central  PubMed  Google Scholar 

  • Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merabet LB, Swisher JD, McMains SA, Halko MA, Amedi A, Pascual-Leone A, Somers DC (2007) Combined activation and deactivation of visual cortex during tactile sensory processing. J Neurophysiol 97:1633–1641

    PubMed  Google Scholar 

  • Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET, Pitskel NB, Kauffman T, Pascual-Leone A (2008) Rapid and reversible recruitment of early visual cortex for touch. PLoS One 3:e3046

    PubMed Central  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052

    PubMed  Google Scholar 

  • Milner AD, Goodale MA (2006) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, Sadato N, Kamitani Y (2008) Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60:915–929

    CAS  PubMed  Google Scholar 

  • Mondloch CJ, Geldart S, Maurer D, Le Grand R (2003) Developmental changes in face processing skills. J Exp Child Psychol 86:67–84

    PubMed  Google Scholar 

  • Moore CI, Stern CE, Corkin S, Fischl B, Gray AC, Rosen BR, Dale AM (2000) Segregation of somatosensory activation in the human rolandic cortex using fMRI. J Neurophysiol 84:558–569

    CAS  PubMed  Google Scholar 

  • Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–246

    CAS  PubMed  Google Scholar 

  • Muller NG, Kleinschmidt A (2003) Dynamic interaction of object- and space-based attention in retinotopic visual areas. J Neurosci 23:9812–9816

    PubMed  Google Scholar 

  • Muller NG, Bartelt OA, Donner TH, Villringer A, Brandt SA (2003) A physiological correlate of the “Zoom Lens” of visual attention. J Neurosci 23:3561–3565

    CAS  PubMed  Google Scholar 

  • Murray EA, Mishkin M (1984) Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11:67–83

    CAS  PubMed  Google Scholar 

  • Murray SO, Wojciulik E (2004) Attention increases neural selectivity in the human lateral occipital complex. Nat Neurosci 7:70–74

    CAS  PubMed  Google Scholar 

  • Murray SO, Boyaci H, Kersten D (2006) The representation of perceived angular size in human primary visual cortex. Nat Neurosci 9:429–434

    CAS  PubMed  Google Scholar 

  • Murthy VN (2011) Olfactory maps in the brain. Annu Rev Neurosci 34:233–258

    CAS  PubMed  Google Scholar 

  • Mycroft RH, Behrmann M, Kay J (2009) Visuoperceptual deficits in letter-by-letter reading? Neuropsychologia 47(7):1733–1744

    PubMed  Google Scholar 

  • Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL (2009) Bayesian reconstruction of natural images from human brain activity. Neuron 63:902–915

    CAS  PubMed  Google Scholar 

  • Naselaris T, Kay KN, Nishimoto S, Gallant JL (2011) Encoding and decoding in fMRI. Neuroimage 56:400–410

    PubMed Central  PubMed  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson AJ, Chen R (2008) Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex 18:2341–2351

    PubMed  Google Scholar 

  • Nestor A, Plaut DC, Behrmann M (2011) Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proc Natl Acad Sci U S A 108:9998–10003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nihashi T, Naganawa S, Sato C, Kawai H, Nakamura T, Fukatsu H, Ishigaki T, Aoki I (2005) Contralateral and ipsilateral responses in primary somatosensory cortex following electrical median nerve stimulation–an fMRI study. Clin Neurophysiol 116:842–848

    PubMed  Google Scholar 

  • Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL (2011) Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21:1641–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE, Kosslyn SM, Rose RM, Davidson RJ (2006) Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci 9:435–442

    CAS  PubMed  Google Scholar 

  • Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424–430

    PubMed  Google Scholar 

  • O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5:1203–1209

    PubMed  Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023

    PubMed  Google Scholar 

  • O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587

    PubMed  Google Scholar 

  • Ogawa H, Wakita M, Hasegawa K, Kobayakawa T, Sakai N, Hirai T, Yamashita Y, Saito S (2005) Functional MRI detection of activation in the primary gustatory cortices in humans. Chem Senses 30:583–592

    CAS  PubMed  Google Scholar 

  • Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E (2001) Functional anatomy of musical perception in musicians. Cereb Cortex 11:754–760

    CAS  PubMed  Google Scholar 

  • Op de Beeck HP (2010) Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses? Neuroimage 49:1943–1948

    PubMed  Google Scholar 

  • Op de Beeck HP, Baker CI (2010) The neural basis of visual object learning. Trends Cogn Sci 14:22–30

    PubMed Central  PubMed  Google Scholar 

  • Op De Beeck H, Vogels R (2000) Spatial sensitivity of macaque inferior temporal neurons. J Comp Neurol 426:505–518

    CAS  PubMed  Google Scholar 

  • Op de Beeck HP, Baker CI, DiCarlo JJ, Kanwisher NG (2006) Discrimination training alters object representations in human extrastriate cortex. J Neurosci 26:13025–13036

    CAS  PubMed  Google Scholar 

  • Op de Beeck HP, Haushofer J, Kanwisher NG (2008) Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 9:123–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23:462–472

    PubMed  Google Scholar 

  • Park S, Brady TF, Greene MR, Oliva A (2011) Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. J Neurosci 31:1333–1340

    CAS  PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  • Perani D, Saccuman MC, Scifo P, Spada D, Andreolli G, Rovelli R, Baldoli C, Koelsch S (2010) Functional specializations for music processing in the human newborn brain. Proc Natl Acad Sci U S A 107:4758–4763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45:S199–S209

    PubMed Central  PubMed  Google Scholar 

  • Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WHC, Cohen L, Haxby JV (2004) Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci U S A 101(15):5658–5663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plailly J, Howard JD, Gitelman DR, Gottfried JA (2008) Attention to odor modulates thalamocortical connectivity in the human brain. J Neurosci 28:5257–5267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plailly J, Delon-Martin C, Royet JP (2012) Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum Brain Mapp 33:224–234

    PubMed  Google Scholar 

  • Pleger B, Foerster AF, Ragert P, Dinse HR, Schwenkreis P, Malin JP, Nicolas V, Tegenthoff M (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40:643–653

    CAS  PubMed  Google Scholar 

  • Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D, Veraart C, De Volder AG (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31:279–285

    CAS  PubMed  Google Scholar 

  • Polonara G, Fabri M, Manzoni T, Salvolini U (1999) Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR Am J Neuroradiol 20:199–205

    CAS  PubMed  Google Scholar 

  • Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215

    CAS  PubMed  Google Scholar 

  • Pylyshyn Z (1999) Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav Brain Sci 22:341–365, discussion 366–423

    CAS  PubMed  Google Scholar 

  • Pylyshyn ZW (2002) Mental imagery: in search of a theory. Behav Brain Sci 25:157–182, discussion 182–237

    PubMed  Google Scholar 

  • Raschle N, Zuk J, Ortiz-Mantilla S, Sliva DD, Franceschi A, Grant PE, Benasich AA, Gaab N (2012) Pediatric neuroimaging in early childhood and infancy: challenges and practical guidelines. Ann N Y Acad Sci 1252:43–50

    PubMed Central  PubMed  Google Scholar 

  • Rauschecker JP (2011) An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hear Res 271:16–25

    PubMed Central  PubMed  Google Scholar 

  • Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauschecker JP, Leaver AM, Muhlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331

    CAS  PubMed  Google Scholar 

  • Reddy L, Tsuchiya N, Serre T (2010) Reading the mind’s eye: decoding category information during mental imagery. Neuroimage 50:818–825

    PubMed Central  PubMed  Google Scholar 

  • Reed CL, Klatzky RL, Halgren E (2005) What vs. where in touch: an fMRI study. Neuroimage 25:718–726

    PubMed  Google Scholar 

  • Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21(4):236–246

    PubMed  Google Scholar 

  • Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647

    CAS  PubMed  Google Scholar 

  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhodes G, Byatt G, Michie PT, Puce A (2004) Is the fusiform face area specialized for faces, individuation, or expert individuation? J Cogn Neurosci 16:189–203

    PubMed  Google Scholar 

  • Rolls ET (2006) Brain mechanisms underlying flavour and appetite. Phil Trans R Soc B: Biol Sci 361:1123–1136

    Google Scholar 

  • Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11:463–473

    CAS  PubMed  Google Scholar 

  • Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71:209–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito DN, Okada T, Honda M, Yonekura Y, Sadato N (2006) Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex. BMC Neurosci 7:79

    PubMed Central  PubMed  Google Scholar 

  • Samson F, Zeffiro TA, Toussaint A, Belin P (2011) Stimulus complexity and categorical effects in human auditory cortex: an activation likelihood estimation meta-analysis. Front Psychol 1:241

    PubMed Central  PubMed  Google Scholar 

  • Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol 103:2544–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Panchuelo RM, Francis ST, Schluppeck D, Bowtell RW (2012) Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T. J Magn Reson Imaging 35:287–299

    PubMed  Google Scholar 

  • Sangrigoli S, de Schonen S (2004) Effect of visual experience on face processing: a developmental study of inversion and non-native effects. Dev Sci 7:74–87

    PubMed  Google Scholar 

  • Savic I, Gulyas B, Larsson M, Roland P (2000) Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26:735–745

    CAS  PubMed  Google Scholar 

  • Sayres R, Grill-Spector K (2006) Object-selective cortex exhibits performance-independent repetition suppression. J Neurophysiol 95:995–1007

    PubMed  Google Scholar 

  • Scherf KS, Behrmann M, Humphreys K, Luna B (2007) Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev Sci 10:F15–F30

    PubMed  Google Scholar 

  • Scherf KS, Luna B, Avidan G, Behrmann M (2011) “What” precedes “which”: developmental neural tuning in face- and place-related cortex. Cereb Cortex 21:1963–1980

    PubMed Central  PubMed  Google Scholar 

  • Schneider KA, Kastner S (2005) Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. J Neurophysiol 94:2491–2503

    PubMed  Google Scholar 

  • Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5:688–694

    CAS  PubMed  Google Scholar 

  • Schneider KA, Richter MC, Kastner S (2004) Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J Neurosci 24:8975–8985

    CAS  PubMed  Google Scholar 

  • Schonwiesner M, Zatorre RJ (2009) Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proc Natl Acad Sci U S A 106:14611–14616

    PubMed Central  PubMed  Google Scholar 

  • Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci U S A 99:17137–17142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzlose RF, Swisher JD, Dang S, Kanwisher N (2008) The distribution of category and location information across object-selective regions in human visual cortex. Proc Natl Acad Sci U S A 105:4447–4452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schweisfurth MA, Schweizer R, Frahm J (2011) Functional MRI indicates consistent intra-digit topographic maps in the little but not the index finger within the human primary somatosensory cortex. Neuroimage 56:2138–2143

    PubMed  Google Scholar 

  • Schweizer R, Voit D, Frahm J (2008) Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 42:28–35

    PubMed  Google Scholar 

  • Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K (2006) Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 29:1013–1022

    PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic, San Diego

    Google Scholar 

  • Simmons WK, Martin A, Barsalou LW (2005) Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 15:1602–1608

    PubMed  Google Scholar 

  • Slotnick SD, Thompson WL, Kosslyn SM (2005) Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb Cortex 15:1570–1583

    PubMed  Google Scholar 

  • Small DM (2010) Taste representation in the human insula. Brain Struct Funct 214:551–561

    PubMed  Google Scholar 

  • Small D, Prescott J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 166:345–357

    PubMed  Google Scholar 

  • Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903

    PubMed  Google Scholar 

  • Small DM, Gerber JC, Mak YE, Hummel T (2005) Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 47:593–605

    CAS  PubMed  Google Scholar 

  • Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F (2008) Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57:786–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286

    CAS  PubMed  Google Scholar 

  • Sobotka S, Ringo JL (1994) Stimulus specific adaptation in excited but not in inhibited cells in inferotemporal cortex of macaque. Brain Res 646:95–99

    CAS  PubMed  Google Scholar 

  • Sperandio I, Chouinard PA, Goodale MA (2012) Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. Nat Neurosci 15:540–542

    CAS  PubMed  Google Scholar 

  • Staeren N, Renvall H, De Martino F, Goebel R, Formisano E (2009) Sound categories are represented as distributed patterns in the human auditory cortex. Curr Biol 19:498–502

    CAS  PubMed  Google Scholar 

  • Stokes M, Thompson R, Cusack R, Duncan J (2009) Top-down activation of shape-specific population codes in visual cortex during mental imagery. J Neurosci 29:1565–1572

    CAS  PubMed  Google Scholar 

  • Striem-Amit E, Hertz U, Amedi A (2011) Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLoS One 6:e17832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC (2011) Differentiation of somatosensory cortices by high-resolution fMRI at 7 T. Neuroimage 54:1012–1020

    PubMed  Google Scholar 

  • Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    CAS  PubMed  Google Scholar 

  • Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150:225–244

    CAS  PubMed  Google Scholar 

  • Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91:1282–1296

    PubMed  Google Scholar 

  • Talkington WJ, Rapuano KM, Hitt LA, Frum CA, Lewis JW (2012) Humans mimicking animals: a cortical hierarchy for human vocal communication sounds. J Neurosci 32:8084–8093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanji K, Leopold DA, Ye FQ, Zhu C, Malloy M, Saunders RC, Mishkin M (2010) Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey. Neuroimage 49:150–157

    PubMed Central  PubMed  Google Scholar 

  • Tarr MJ, Gauthier I (2000) FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat Neurosci 3:764–769

    CAS  PubMed  Google Scholar 

  • Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cogn Neurosci 23:4122–4137

    PubMed  Google Scholar 

  • Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D, Dehaene S (2006) Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33:1104–1116

    PubMed  Google Scholar 

  • Tootell RB, Silverman MS, Switkes E, De Valois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904

    CAS  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    CAS  PubMed  Google Scholar 

  • Trampel R, Ott DV, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21:2075–2081

    PubMed  Google Scholar 

  • Turner R, Oros-Peusquens AM, Romanzetti S, Zilles K, Shah NJ (2008) Optimised in vivo visualisation of cortical structures in the human brain at 3 T using IR-TSE. Magn Reson Imaging 26:935–942

    PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Mansfield RJW, Goodale MS (eds) The analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG (2005) Tactile form and location processing in the human brain. Proc Natl Acad Sci USA 102:12601–12605

    PubMed Central  PubMed  Google Scholar 

  • van der Linden M, Murre JM, van Turennout M (2008) Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS One 3:e3995

    PubMed Central  PubMed  Google Scholar 

  • van Turennout M, Ellmore T, Martin A (2000) Long-lasting cortical plasticity in the object naming system. Nat Neurosci 3:1329–1334

    PubMed  Google Scholar 

  • Veldhuizen MG, Small DM (2011) Modality-specific neural effects of selective attention to taste and odor. Chem Senses 36:747–760

    PubMed Central  PubMed  Google Scholar 

  • Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses 32:569–581

    PubMed  Google Scholar 

  • Veldhuizen MG, Douglas D, Aschenbrenner K, Gitelman DR, Small DM (2011a) The anterior insular cortex represents breaches of taste identity expectation. J Neurosci 31:14735–14744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veldhuizen MG, Albrecht J, Zelano C, Boesveldt S, Breslin P, Lundstrom JN (2011b) Identification of human gustatory cortex by activation likelihood estimation. Hum Brain Mapp 32:2256–2266

    PubMed Central  PubMed  Google Scholar 

  • Vonbekesy G (1949) The vibration of the cochlear partition in anatomical preparations and in models of the inner ear. J Acoust Soc Am 21:233–245

    Google Scholar 

  • Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci 5:491–499

    CAS  PubMed  Google Scholar 

  • Wade A, Augath M, Logothetis N, Wandell B (2008) fMRI measurements of color in macaque and human. J Vis 8(6):1–19

    Google Scholar 

  • Wall MB, Walker R, Smith AT (2009) Functional imaging of the human superior colliculus: an optimised approach. Neuroimage 47:1620–1627

    PubMed  Google Scholar 

  • Wallis G, Backus BT, Langer M, Huebner G, Bulthoff H (2009) Learning illumination- and orientation-invariant representations of objects through temporal association. J Vis 9:6

    PubMed  Google Scholar 

  • Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737

    PubMed Central  PubMed  Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56:366–383

    CAS  PubMed  Google Scholar 

  • Weiner KS, Sayres R, Vinberg J, Grill-Spector K (2010) fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J Neurophysiol 103:3349–3365

    PubMed Central  PubMed  Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7

    CAS  PubMed  Google Scholar 

  • Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8:227–233

    CAS  PubMed  Google Scholar 

  • Wong AC, Palmeri TJ, Rogers BP, Gore JC, Gauthier I (2009) Beyond shape: how you learn about objects affects how they are represented in visual cortex. PLoS One 4:e8405

    PubMed Central  PubMed  Google Scholar 

  • Woods DL, Stecker GC, Rinne T, Herron TJ, Cate AD, Yund EW, Liao I, Kang X (2009) Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One 4:e5183

    PubMed Central  PubMed  Google Scholar 

  • Xu Y (2005) Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex 15:1234–1242

    PubMed  Google Scholar 

  • Yacoub R, Ferrucci S (2011) Charles Bonnet syndrome. Optometry 82:421–427

    PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Ugurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn spin echo BOLD functional MRI at 7 Tesla. Neuroimage 37:1161–1177

    PubMed Central  PubMed  Google Scholar 

  • Yoo SS, Freeman DK, McCarthy JJ 3rd, Jolesz FA (2003) Neural substrates of tactile imagery: a functional MRI study. Neuroreport 14:581–585

    PubMed  Google Scholar 

  • Zelano C, Bensafi M, Porter J, Mainland J, Johnson B, Bremner E, Telles C, Khan R, Sobel N (2005) Attentional modulation in human primary olfactory cortex. Nat Neurosci 8:114–120

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris I. Baker PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Harel, A., Baker, C.I. (2014). Imaging Perception. In: Mulert, C., Shenton, M. (eds) MRI in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54542-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54542-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54541-2

  • Online ISBN: 978-3-642-54542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics