Magnetic Resonance Spectroscopy

  • Sai Merugumala
  • Saadalah Ramadan
  • Walker Keenan
  • Huijun Liao
  • Luke Y-J. Wang
  • Alexander Lin
Chapter

Abstract

Magnetic resonance spectroscopy (MRS) measures the concentration of chemicals in the brain using conventional magnetic resonance imaging (MRI) scanners, thereby providing a “virtual biopsy” that is noninvasive, quantitative, and objective for the characterization of psychiatric disorders as well as other brain disorders. The primary chemicals relevant to psychiatry are N-acetylaspartate, a putative neuronal marker; glutamate, an excitatory neurotransmitter; γ-aminobutyric acid, an inhibitory neurotransmitter; and glutathione, an antioxidant involved in neuroinflammation. There exist different methods for measuring each of these metabolites using specialized pulse sequences, which will be described in detail. Finally, their biological roles and metabolism will be discussed in the context of psychiatric diseases such as schizophrenia, mood disorders, depression, and anxiety.

Keywords

Depression Glutathione Cysteine Glutamine NMDA 

Abbreviations

13C

Carbon 13

2D COSY

Two-dimensional correlated spectroscopy

2D JPRESS

Two-dimensional J-resolved point-resolved spectroscopy

AD

Alzheimer’s disease

BD

Bipolar disorder

CEST

Chemical exchange saturation transfer

Cho

Choline

Cr

Creatine

CRLB

Cramer–Rao lower bounds

CSI

Chemical shift imaging

FFT

Fast Fourier transform

FID

Free induction decay

fMRI

Functional magnetic resonance imaging

GABA

Gamma-aminobutyric acid

GABA-T

GABA transaminase

GAD

Glutamic acid decarboxylase

Gln

Glutamine

Glu

Glutamate

GluCEST

Glutamate chemical exchange saturation transfer

Glx

Both glutamate and glutamine

GPC

GlyceroPhosphoCholine

GPx

Glutathione peroxidase

GSH

Glutathione

GSSG

Glutathione disulfide

JPRESS

J-resolved point-resolved spectroscopy

LCModel

Linear compilation model

MCI

Mild cognitive impairment

MEGA-PRESS

Mescher–Garwood point-resolved spectroscopy

mI

Myoinositol

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

NAA

N-Acetylaspartic acid

NAAG

N-Acetylaspartylglutamic acid

NMDA

N-Methyl-d-aspartic acid

NMR

Nuclear magnetic resonance

PCP

Phencyclidine

PC

Phosphorylcholine

PCr

Phosphocreatine

PET

Positron emission tomographyPRESS, Point-resolved spectroscopy

ProFit

Prior knowledge fitting

RF

Radio frequency

ROI

Region of interest

ROS

Reactive oxygen species

STEAM

Stimulated echo acquisition mode

SVS

Single voxel spectroscopy

TCA

Tricarboxylic acid cycle

TE

Echo time

TI

Inversion time

TR

Relaxation time

References

  1. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, axidative stress and the pathogenesis of Alzheimers disease. Curr Pharm Des 16:2766–2778. doi: 10.2174/138161210793176572 PubMedGoogle Scholar
  2. Andrew ER (1980) N.m.r. imaging of intact biological systems. Philos Trans R Soc Lond B Biol Sci 289:471–481PubMedGoogle Scholar
  3. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653. doi: 10.1111/j.1471-4159.2006.03913.x PubMedGoogle Scholar
  4. Barker PB (2001) N-acetyl aspartate – a neuronal marker? Ann Neurol 49:423–424PubMedGoogle Scholar
  5. Baslow MH (2000) Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 75:453–459PubMedGoogle Scholar
  6. Baslow MH (2010) Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain’s “operating system”: how NAA metabolism supports meaningful intercellular frequency-encoded communications. Amino Acids 39:1139–1145. doi: 10.1007/s00726-010-0656-6 PubMedGoogle Scholar
  7. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. doi: 10.1038/nrn920 PubMedGoogle Scholar
  8. Bhagwagar Z, Wylezinska M, Taylor M et al (2004) Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry 161:368–370PubMedGoogle Scholar
  9. Bhattacharyya PK, Lowe MJ, Phillips MD (2007) Spectral quality control in motion-corrupted single-voxel J-difference editing scans: An interleaved navigator approach. Magn Reson Med 58:808–812PubMedGoogle Scholar
  10. Binesh N, Kumar A, Hwang S et al (2004) Neurochemistry of late-life major depression: a pilot two-dimensional MR spectroscopic study. J Magn Reson Imaging 20:1039–1045. doi: 10.1002/jmri.20214 PubMedGoogle Scholar
  11. Blüml S, Tan J, Harris K et al (1999) Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 23:272–275PubMedGoogle Scholar
  12. Bluml S, Zuckerman E, Tan J, Ross BD (1998) Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem 71:1564–1576PubMedGoogle Scholar
  13. Bolan PJ, DelaBarre L, Baker EH et al (2002) Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 48:215–222PubMedGoogle Scholar
  14. Bora E, Fornito A, Yücel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67:1097–1105. doi: 10.1016/j.biopsych.2010.01.020 PubMedGoogle Scholar
  15. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348PubMedGoogle Scholar
  16. Brady RO, McCarthy JM, Prescot AP et al (2013) Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. doi: 10.1111/bdi.12074 PubMedGoogle Scholar
  17. Cai K, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306. doi: 10.1038/nm.2615 PubMedCentralPubMedGoogle Scholar
  18. Cai K, Singh A, Roalf DR et al (2013) Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed. doi: 10.1002/nbm.2949 Google Scholar
  19. Capizzano AA, Jorge RE, Acion LC, Robinson RG (2007) In vivo proton magnetic resonance spectroscopy in patients with mood disorders: a technically oriented review. J Magn Reson Imaging: JMRI 26:1378–1389. doi: 10.1002/jmri.21144 PubMedGoogle Scholar
  20. Caverzasi E, Pichiecchio A, Poloni GU et al (2012) Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct Neurol 27:13–22PubMedCentralPubMedGoogle Scholar
  21. Chakraborty G, Mekala P, Yahya D et al (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745PubMedGoogle Scholar
  22. Choi I-Y, Lee S-P, Merkle H, Shen J (2004) Single-shot two-echo technique for simultaneous measurement of GABA and creatine in the human brain in vivo. Magn Reson Med 51:1115–1121. doi: 10.1002/mrm.20082 PubMedGoogle Scholar
  23. Choi I-Y, Lee S-P, Shen J (2005a) In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity. J Magn Reson (San Diego, Calif : 1997) 172:9–16. doi: 10.1016/j.jmr.2004.09.021 Google Scholar
  24. Choi I-Y, Lee S-P, Shen J (2005b) Selective homonuclear Hartmann-Hahn transfer method for in vivo spectral editing in the human brain. Magn Reson Med 53:503–510. doi: 10.1002/mrm.20381 PubMedGoogle Scholar
  25. Cocuzzo D, Lin A, Ramadan S et al (2011) Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy. Conf Proc IEEE Eng Med Biol Soc 2011:4929–4934. doi: 10.1109/IEMBS.2011.6091222 PubMedGoogle Scholar
  26. Cooper JR, Bloom FE, Roth RH (1970) The biochemical basis of neuropharmacology. Oxford University Press, New YorkGoogle Scholar
  27. Do KQ, Trabesinger AH, Kirsten-Krüger M et al (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728PubMedGoogle Scholar
  28. Dreher W, Leibfritz D (1995) On the use of 2-Dimensional-J NMR measurements for in-vivo proton MRS- measurement of homonuclear decoupled spectra without the need for short echo times. Magn Reson Med 34:331–337. doi: 10.1002/mrm.1910340309 PubMedGoogle Scholar
  29. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Eur J Biochem 267:4912–4916. doi: 10.1046/j.1432-1327.2000.01597.x PubMedGoogle Scholar
  30. Duffy SL, Lagopoulos J, Hickie IB et al (2013) Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimers Dement. doi: 10.1016/j.jalz.2013.01.005 Google Scholar
  31. Edden RAE, Barker PB (2007) Spatial effects in the detection of γ-aminobutyric acid: Improved sensitivity at high fields using inner volume saturation. Magn Reson Med 58:1276–1282PubMedGoogle Scholar
  32. Ernst RR (1992) Nobel Lecture. Nuclear magnetic resonance Fourier transform spectroscopy. Biosci Rep 12:143–187PubMedGoogle Scholar
  33. Ernst T, Jiang CS, Nakama H et al (2010) Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. J Magn Reson Imaging: JMRI 32:1045–1053. doi: 10.1002/jmri.22366 PubMedCentralPubMedGoogle Scholar
  34. Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26:450–456. doi: 10.1177/1533317511421780 PubMedGoogle Scholar
  35. Frey BN, Stanley JA, Nery FG et al (2007) Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 9(Suppl 1):119–127. doi: 10.1111/j.1399-5618.2007.00454.x PubMedGoogle Scholar
  36. Friston KJ (1997) Analyzing brain images: principles and overview. In: Frackowiak RSJ, Friston Frith CD, Dolan RJMS (eds) Human brain function. Academic, San Diego, pp 25–41Google Scholar
  37. Gigante AD, Bond DJ, Lafer B et al (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 14:478–487. doi: 10.1111/j.1399-5618.2012.01033.x PubMedGoogle Scholar
  38. Goddard AW, Mason GF, Almai A et al (2001) Reductions in occipital cortex GABA levels in panic disorder detected with 1 h-magnetic resonance spectroscopy. Arch Gen Psychiatry 58:556PubMedGoogle Scholar
  39. Goddard AW, Mason GF, Appel M et al (2004) Impaired GABA neuronal response to acute benzodiazepine administration in panic disorder. Am J Psychiatry 161:2186–2193PubMedGoogle Scholar
  40. Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344. doi: 10.1007/s11920-010-0124-8 PubMedCentralPubMedGoogle Scholar
  41. Goto N, Yoshimura R, Moriya J et al (2009) Reduction of brain gamma-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophr Res 112:192–193. doi: 10.1016/j.schres.2009.04.026 PubMedGoogle Scholar
  42. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153PubMedGoogle Scholar
  43. De Graaf RA, Rothman DL, Behar KL (2011) State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR Biomed 24:958–972. doi: 10.1002/nbm.1761 PubMedCentralPubMedGoogle Scholar
  44. Graff-Radford J, Kantarci K (2013) Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatr Dis Treat 9:687–696. doi: 10.2147/NDT.S35440 PubMedCentralPubMedGoogle Scholar
  45. Gruber S, Frey R, Mlynárik V et al (2003) Quantification of metabolic differences in the frontal brain of depressive patients and controls obtained by 1H-MRS at 3 Tesla. Invest Radiol 38:403–408. doi: 10.1097/01.rli.0000073446.43445.20 PubMedGoogle Scholar
  46. Gruetter R, Novotny EJ, Boulware SD et al (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from d-[1-13C]glucose. J Neurochem 63:1377–1385. doi: 10.1046/j.1471-4159.1994.63041377.x
  47. Haase A, Frahm J, Matthaei D et al (1986) MR imaging using stimulated echoes (STEAM). Radiology 160:787–790PubMedGoogle Scholar
  48. Harris K, Lin A, Bhattacharya P et al (2006) Regulation of NAA-synthesis in the human brain in vivo: Canavan’s disease, Alzheimer’s disease and schizophrenia. Adv Exp Med Biol 576:263–273. doi: 10.1007/0-387-30172-0_18; discussion 361–3PubMedGoogle Scholar
  49. Hasler G, Neumeister A, Van der Veen JW et al (2005) Normal prefrontal gamma-aminobutyric acid levels in remitted depressed subjects determined by proton magnetic resonance spectroscopy. Biol Psychiatry 58:969–973PubMedGoogle Scholar
  50. Hennig J (1992) The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 40–49Google Scholar
  51. Hermens DF, Lagopoulos J, Naismith SL et al (2012) Distinct neurometabolic profiles are evident in the anterior cingulate of young people with major psychiatric disorders. Transl Psychiatry 2:e110. doi: 10.1038/tp.2012.35 PubMedCentralPubMedGoogle Scholar
  52. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743PubMedGoogle Scholar
  53. Hurd R, Sailasuta N, Srinivasan R et al (2004) Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn Reson Med 51:435–440PubMedGoogle Scholar
  54. Jang DP, Lee JM, Lee E et al (2005) Interindividual reproducibility of glutamate quantification using 1.5-T proton magnetic resonance spectroscopy. Magn Reson Med 53:708–712. doi: 10.1002/mrm.20387 PubMedGoogle Scholar
  55. Jarskog LF, Miyamoto S, Lieberman JA (2007) Schizophrenia: new pathological insights and therapies. Annu Rev Med 58:49–61. doi: 10.1146/annurev.med.58.060904.084114 PubMedGoogle Scholar
  56. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308PubMedGoogle Scholar
  57. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546. doi: 10.1063/1.438208 Google Scholar
  58. Jensen JE, Frederick BD, Wang L et al (2005) Two-dimensional, J-resolved spectroscopic imaging of GABA at 4 Tesla in the human brain. Magn Reson Med 54:783–788. doi: 10.1002/mrm.20644 PubMedGoogle Scholar
  59. Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res 26:488–495. doi: 10.1179/016164104225017640 PubMedGoogle Scholar
  60. Kaiser LG, Young K, Matson GB (2007) Elimination of spatial interference in PRESS-localized editing spectroscopy. Magn Reson Med 58:813–818PubMedGoogle Scholar
  61. Kantarci K (2007) 1H magnetic resonance spectroscopy in dementia. Br J Radiol 80(Spec No 2):S146–S152. doi: 10.1259/bjr/60346217 PubMedGoogle Scholar
  62. Kantarci K (2013) Proton MRS in mild cognitive impairment. J Magn Reson Imaging: JMRI 37:770–777. doi: 10.1002/jmri.23800 PubMedCentralPubMedGoogle Scholar
  63. Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398PubMedCentralPubMedGoogle Scholar
  64. Kantarci K, Weigand SD, Przybelski SA et al (2013) MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology 81:126–133. doi: 10.1212/WNL.0b013e31829a3329 PubMedGoogle Scholar
  65. Kato T, Takahashi S, Shioiri T et al (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31:125–133PubMedGoogle Scholar
  66. Kaufman RE, Ostacher MJ, Marks EH et al (2009) Brain GABA levels in patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 33:427–434PubMedGoogle Scholar
  67. Ke Y, Cohen BM, Bang JY et al (2000) Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry Res 100:169–178PubMedGoogle Scholar
  68. Kegeles LS, Humaran TJ, Mann JJ (1998) In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 44:382–398PubMedGoogle Scholar
  69. Keltner JR, Wald LL, Frederick BD, Renshaw PF (1997) In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 37:366–371PubMedGoogle Scholar
  70. Kraguljac NV, Reid M, White D et al (2012) Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res 203:111–125. doi: 10.1016/j.pscychresns.2012.02.003 PubMedCentralPubMedGoogle Scholar
  71. Kreis R, Ernst T, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson - Ser B 102:9–19. doi: 10.1006/jmrb.1993.1056 Google Scholar
  72. Lagopoulos J, Hermens DF, Tobias-Webb J et al (2013) In vivo glutathione levels in young persons with bipolar disorder: A magnetic resonance spectroscopy study. J Psychiatr Res 47:412–417. doi: 10.1016/j.jpsychires.2012.12.006 PubMedGoogle Scholar
  73. Lauterbur PC (1989) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res (244): 3–6Google Scholar
  74. Lin A, Ross BD, Harris K, Wong W (2005) Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2:197–214. doi: 10.1602/neurorx.2.2.197 PubMedCentralPubMedGoogle Scholar
  75. Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease–an in vivo 13C magnetic resonance spectroscopy study. Magn Reson Mater Phys, Biol Med 16:29–42Google Scholar
  76. Long Z, Medlock C, Dzemidzic M et al (2013) Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 44:131–135. doi: 10.1016/j.pnpbp.2013.01.020 PubMedGoogle Scholar
  77. Luykx JJ, Laban KG, Van den Heuvel MP et al (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36:198–205. doi: 10.1016/j.neubiorev.2011.05.014 PubMedGoogle Scholar
  78. Lymer K, Haga K, Marshall I et al (2007) Reproducibility of GABA measurements using 2D J-resolved magnetic resonance spectroscopy. Magn Reson Imaging 25:634–640. doi: 10.1016/j.mri.2006.10.010 PubMedGoogle Scholar
  79. Maddock RJ, Buonocore MH (2012) MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci. doi: 10.1007/7854_2011_197 PubMedGoogle Scholar
  80. Mandal PK, Tripathi M, Sugunan S (2012) Brain oxidative stress: detection and mapping of anti-oxidant marker “Glutathione” in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem Biophys Res Commun 417:43–48. doi: 10.1016/j.bbrc.2011.11.047 PubMedGoogle Scholar
  81. Marsman A, Van den Heuvel MP, Klomp DWJ et al (2013) Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull 39:120–129. doi: 10.1093/schbul/sbr069 PubMedCentralPubMedGoogle Scholar
  82. Mason GF, Gruetter R, Rothman DL et al (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, μ-ketoglutarate/Glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25PubMedGoogle Scholar
  83. Matsuzawa D, Hashimoto K (2011) Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal 15:2057–2065. doi: 10.1089/ars.2010.3453 PubMedGoogle Scholar
  84. Matsuzawa D, Obata T, Shirayama Y et al (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PloS one 3:e1944. doi: 10.1371/journal.pone.0001944 PubMedCentralPubMedGoogle Scholar
  85. Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “Four-Dimensional” NMR. J Magn Reson 147–152Google Scholar
  86. McLean MA, Busza AL, Wald LL et al (2002) In vivo GABA+ measurement at 1.5T using a PRESS-localized double quantum filter. Magn Reson Med 48:233–241PubMedGoogle Scholar
  87. Minoshima S, Giordani B, Berent S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94. doi: 10.1002/ana.410420114 PubMedGoogle Scholar
  88. Moffett JR, Namboodiri MA, Neale JH (1993) Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat brain. J Histochem Cytochem 41:559–570PubMedGoogle Scholar
  89. Moffett JR, Ross B, Arun P et al (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131. doi: 10.1016/j.pneurobio.2006.12.003 PubMedCentralPubMedGoogle Scholar
  90. Mosley RL, Benner EJ, Kadiu I et al (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281. doi: 10.1016/j.cnr.2006.09.006 PubMedCentralPubMedGoogle Scholar
  91. Mullins PG, Chen H, Xu J et al (2008) Comparative reliability of proton spectroscopy techniques designed to improve detection of J-coupled metabolites. Magn Reson Med 60:964–969. doi: 10.1002/mrm.21696 PubMedGoogle Scholar
  92. Olman CA, Davachi L, Inati S (2009) Distortion and signal loss in medial temporal lobe. PloS one 4:e8160. doi: 10.1371/journal.pone.0008160 PubMedCentralPubMedGoogle Scholar
  93. Olsen RW, DeLorey TM (1999) GABA synthesis, uptake and release. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven, PhiladelphiaGoogle Scholar
  94. Ongür D, Prescot AP, Jensen JE et al (2009) Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res 172:44–48. doi: 10.1016/j.pscychresns.2008.06.002 PubMedCentralPubMedGoogle Scholar
  95. Ongür D, Prescot AP, McCarthy J et al (2010) Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 68:667–670. doi: 10.1016/j.biopsych.2010.05.016 PubMedCentralPubMedGoogle Scholar
  96. Öz G, Terpstra M, Tkáč I et al (2006) Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med 55:296–301PubMedGoogle Scholar
  97. Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629PubMedCentralPubMedGoogle Scholar
  98. Penner J, Rupsingh R, Smith M et al (2010) Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 34:104–110. doi: 10.1016/j.pnpbp.2009.10.007 PubMedGoogle Scholar
  99. Phan KL, Fitzgerald DA, Cortese BM et al (2005) Anterior cingulate neurochemistry in social anxiety disorder: 1H-MRS at 4 Tesla. Neuroreport 16:183–186PubMedGoogle Scholar
  100. Pollack MH, Jensen JE, Simon NM et al (2008) High-field MRS study of GABA, glutamate and glutamine in social anxiety disorder: response to treatment with levetiracetam. Prog Neuropsychopharmacol Biol Psychiatry 32:739–743PubMedGoogle Scholar
  101. Port JD, Agarwal N (2011) MR spectroscopy in schizophrenia. J Magn Reson Imaging: JMRI 34:1251–1261. doi: 10.1002/jmri.22787 PubMedGoogle Scholar
  102. Posner MJ, Raichle ME (1997) Images of mind. WH Freeman, New YorkGoogle Scholar
  103. Posse S, Otazo R, Dager SR, Alger J (2013) MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging 37:1301–1325. doi: 10.1002/jmri.23945 PubMedGoogle Scholar
  104. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264PubMedGoogle Scholar
  105. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedGoogle Scholar
  106. Ramadan S (2007) Phase-rotation in in-vivo localised spectroscopy. Concepts Magn Reson 30:147–153Google Scholar
  107. Ramadan S, Andronesi OC, Stanwell P et al (2011) Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 259:540–549. doi: 10.1148/radiol.11101123 PubMedCentralPubMedGoogle Scholar
  108. Rezin GT, Amboni G, Zugno AI et al (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029. doi: 10.1007/s11064-008-9865-8 PubMedGoogle Scholar
  109. Rigotti DJ, Inglese M, Gonen O (2007) Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol 28:1843–1849. doi: 10.3174/ajnr.A0774 PubMedGoogle Scholar
  110. Rinck P (2012) Magnetic resonance in medicine. The Basic Textbook of the European Magnetic Resonance Forum. 6th edn. Electronic version 6.1. Available at www.magnetic-resonance.org.
  111. Rosen Y, Lenkinski RE (2007) Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics 4:330–345. doi: 10.1016/j.nurt.2007.04.009 PubMedGoogle Scholar
  112. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84PubMedGoogle Scholar
  113. Ross B, Lin A, Harris K et al (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369PubMedGoogle Scholar
  114. Ross BD (2000) Real or imaginary? Human metabolism through nuclear magnetism. IUBMB Life 50:177–187. doi: 10.1080/152165400300001499 PubMedGoogle Scholar
  115. Ross BD, Bluml S, Cowan R et al (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172PubMedGoogle Scholar
  116. Rowland LM, Kontson K, West J et al (2012) In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull. doi: 10.1093/schbul/sbs092 PubMedGoogle Scholar
  117. Sailasuta N, Harris K, Tran T, Ross B (2011) Minimally invasive biomarker confirms glial activation present in Alzheimer’s disease: a preliminary study. Neuropsychiatr Dis Treat 7:495–499PubMedCentralPubMedGoogle Scholar
  118. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77. doi: 10.1016/j.neuropharm.2011.07.036 PubMedCentralPubMedGoogle Scholar
  119. Satoh T, Yoshioka Y (2006) Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci Res 55:34–39. doi: 10.1016/j.neures.2006.01.002 PubMedGoogle Scholar
  120. Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352. doi: 10.1023/a:1022397704922 PubMedGoogle Scholar
  121. Schousboe A, Waagepetersen H (2005) Role of astrocytes in glutamate homeostasis: Implications for excitotoxicity. Neurotox Res 8:221–225. doi: 10.1007/bf03033975 PubMedGoogle Scholar
  122. Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. Neuroimage 21:1762–1771PubMedGoogle Scholar
  123. Schulte RF, Boesiger P (2006) ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 19:255–263. doi: 10.1002/nbm.1026 PubMedGoogle Scholar
  124. Schulte RF, Lange T, Beck J et al (2006) Improved two-dimensional J-resolved spectroscopy. NMR Biomed 19:264–270. doi: 10.1002/nbm.1027 PubMedGoogle Scholar
  125. Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72PubMedGoogle Scholar
  126. Sibson NR, Dhankhar A, Mason GF et al (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321PubMedCentralPubMedGoogle Scholar
  127. Simister RJ, McLean MA, Barker GJ, Duncan JS (2003) A proton magnetic resonance spectroscopy study of metabolites in the occipital lobes in epilepsy. Epilepsia 44:550–558PubMedGoogle Scholar
  128. Starcuk Z, Starcuk Z Jr, Horky J (2001) “Baseline” problems in very short echo-time proton MR spectroscopy of low molecular weight metabolites in the brain. Meas Sci Rev 1:17–20Google Scholar
  129. Strawn JR, Chu W-J, Whitsel RM et al (2013) A pilot study of anterior cingulate cortex neurochemistry in adolescents with generalized anxiety disorder. Neuropsychobiology 67:224–229. doi: 10.1159/000347090 PubMedGoogle Scholar
  130. Tayoshi S, Nakataki M, Sumitani S et al (2010) GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 117:83–91. doi: 10.1016/j.schres.2009.11.011 PubMedGoogle Scholar
  131. Terpstra M, Ugurbil K, Gruetter R (2002) Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 47:1009–1012PubMedGoogle Scholar
  132. Terpstra M, Vaughan TJ, Ugurbil K et al (2005) Validation of glutathione quantitation from STEAM spectra against edited 1H NMR spectroscopy at 4 T: application to schizophrenia. Magma (New York, NY) 18:276–282. doi: 10.1007/s10334-005-0012-0 Google Scholar
  133. Thomas MA, Yue K, Binesh N et al (2001) Localized two-dimensional shift correlated MR spectroscopy of human brain. Magn Reson Med 46:58–67PubMedGoogle Scholar
  134. Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61PubMedGoogle Scholar
  135. Vanhamme L, Van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43. doi: 10.1006/jmre.1997.1244 PubMedGoogle Scholar
  136. Waddell KW, Avison MJ, Joers JM, Gore JC (2007) A practical guide to robust detection of GABA in human brain by J-difference spectroscopy at 3 T using a standard volume coil. Magn Reson Imaging 25:1032–1038. doi: 10.1016/j.mri.2006.11.026 PubMedCentralPubMedGoogle Scholar
  137. Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3T in 1H magnetic resonance spectroscopy. J Magn Reson Imaging 34:645–652PubMedGoogle Scholar
  138. Wood SJ, Berger GE, Wellard RM et al (2009) Medial temporal lobe glutathione concentration in first episode psychosis: a 1H-MRS investigation. Neurobiol Dis 33:354–357. doi: 10.1016/j.nbd.2008.11.018 PubMedGoogle Scholar
  139. Yang S, Hu J, Kou Z, Yang Y (2008) Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4 T. Magn Reson Med// 59:236–244. doi: 10.1002/mrm.21463 Google Scholar
  140. Yoon JH, Maddock RJ, Rokem A et al (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30:3777–3781PubMedCentralPubMedGoogle Scholar
  141. Zhou J, van Zijl PCM (2006) Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc 48:109–136. doi: 10.1016/j.pnmrs.2006.01.001 Google Scholar
  142. Zwanzger P, Zavorotnyy M, Gencheva E et al (2013) Acute shift in glutamate concentrations following experimentally induced panic with cholecystokinin tetrapeptide-A 3T-MRS study in healthy subjects. Neuropsychopharmacology 38:1648–1654. doi: 10.1038/npp.2013.61 PubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2014

Authors and Affiliations

  • Sai Merugumala
    • 1
  • Saadalah Ramadan
    • 2
  • Walker Keenan
    • 1
  • Huijun Liao
    • 1
  • Luke Y-J. Wang
    • 1
    • 3
  • Alexander Lin
    • 1
    • 4
  1. 1.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Faculty of Health, School of Health SciencesUniversity of NewcastleCallaghanAustralia
  3. 3.Department of Anesthesiology, Perioperative and Pain MedicineBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Psychiatric Neuroimaging LaboratoryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations