Advertisement

Drug Addiction

  • Katrin CharletEmail author
  • Anne Beck
  • Andreas Heinz
Chapter

Abstract

In vivo imaging using magnetic resonance techniques helps to investigate one of the most common psychiatric diseases worldwide: substance dependence. Its individual development and maintenance is assumed to result from an interaction of various psychological, genetic, social, and substance-inherent psychotropic conditions that determine neuronal correlates of addicted behavior. Chronic substance abuse engages various neuroadaptive processes in different neurotransmitter systems, such as dopaminergic, glutamatergic, serotonergic, and opioidergic neurotransmission, which will be discussed in detail. Further, magnetic resonance imaging (MRI) methods, like functional magnetic resonance imaging (MRI), positron-emission tomography (PET), proton magnetic resonance spectroscopy (1H-MRS), and structural MRI, have enabled researchers to get crucial in vivo insight into major mechanisms of drug dependence, i.e., heightened drug-associated reward processing, abnormal functional connectivity predicting impairments in learning, decision-making, and the magnitude of drug craving. Likewise, decreased striatal dopamine synthesis capacity and downregulation of dopamine D2/3 receptor availability have been correlated with drug craving and treatment outcome. In this chapter, we focus on recent neuroimaging studies that contribute to the research of individuals depending on alcohol, heroin, cocaine, or other psychostimulants. Finally, MRI studies on the functional and structural basis of pathological gambling as a related behavioral addiction are reviewed.

Keywords

Single Photon Emission Compute Tomography Alcohol Dependence Pathological Gambler Ventral Striatum White Matter Integrity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

1H-MRS

Proton magnetic resonance spectroscopy

5-HT

Serotonin

Cho

Choline

Cr

Creatine

DA

Dopamine

DRD2

Dopamine D2 receptor

DSM-IV

Diagnostic and Statistical Manual of Mental Disorders

DTI

Diffusion tensor imaging

fMRI

Functional magnetic resonance imaging

GABA

Gamma-aminobutyric acid

MRI

Magnetic resonance imaging

NAA

N-acetyl-aspartate

NMDA

N-methyl-D-aspartate

PET

Positron-emission tomography

PFC

Prefrontal cortex

SPECT

Single photon emission computed tomography

References

  1. Abi-Dargham A et al (1998) Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [123I]iomazenil. Am J Psychiatry 155(11):1550–1555PubMedGoogle Scholar
  2. Agartz I et al (1991) T1 and T2 relaxation time estimates and brain measures during withdrawal in alcoholic men. Drug Alcohol Depend 29(2):157–169PubMedCrossRefGoogle Scholar
  3. Asensio S et al (2010) Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later. Synapse (New York, NY) 64(5):397–402CrossRefGoogle Scholar
  4. Bartsch A et al (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130(Pt 1):36–47PubMedGoogle Scholar
  5. Beck A et al (2012) Relapse in alcohol dependence: the impact of brain structure, brain function and brain connectivity. Arch Gen Psychiatry 69:842–852PubMedCrossRefGoogle Scholar
  6. Bendszus M et al (2001) Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. AJNR Am J Neuroradiol 22(10):1926–1932PubMedGoogle Scholar
  7. Berridge K (2009) Wanting and liking: observations from the neuroscience and psychology laboratory. Inquiry (Oslo, Norway) 52(4):378Google Scholar
  8. Berridge K, Kringelbach M (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199:457–480CrossRefGoogle Scholar
  9. Berridge K, Robinson T, Aldridge J (2009) Dissecting components of reward: “liking”, “wanting”, and learning. Curr Opin Pharmacol 9:65–73PubMedCentralPubMedCrossRefGoogle Scholar
  10. Besson J et al (1989) Magnetic resonance imaging in Alzheimer’s disease, multi-infarct dementia, alcoholic dementia and Korsakoff’s psychosis. Acta Psychiatr Scand 80(5):451–458PubMedCrossRefGoogle Scholar
  11. Boileau I et al (2003) Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49:226–231PubMedCrossRefGoogle Scholar
  12. Carlen P et al (1978) Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computed tomography scans. Science (New York, NY) 200(4345):1076–1078CrossRefGoogle Scholar
  13. Charlet K, Beck A, Heinz A (2013a) The dopamine system in mediating alcohol effects in humans. Curr Top Behav Neurosci 13:461–488PubMedCrossRefGoogle Scholar
  14. Charlet K et al (2013b) Neural activation during processing of aversive faces predicts treatment outcome in alcoholism. Addict Biol. 2013 Mar 7. doi: 10.1111/adb.12045.(Epub ahead of print)
  15. Charlet K et al (2013c) Increased neural activity during high working memory load predicts low relapse risk in alcohol dependence. Addict Biol. 2013 Oct 22. doi: 10.1111/adb.12103. (Epub ahead of print)
  16. Crockford D et al (2005) Cue-induced brain activity in pathological gamblers. Biol Psychiatry 58(10): 787–795PubMedCrossRefGoogle Scholar
  17. de Ruiter M et al (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34(4):1027–1038PubMedCrossRefGoogle Scholar
  18. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114PubMedCrossRefGoogle Scholar
  19. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7(1):69–76PubMedCrossRefGoogle Scholar
  20. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278PubMedCentralPubMedCrossRefGoogle Scholar
  21. Di Sclafani V et al (1995) Brain atrophy and cognitive function in older abstinent alcoholic men. Alcohol Clin Exp Res 19(5):1121–1126PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dilling H, Mombour W, Schmidt M (2000) Internationale Klassifikation psychischer Störungen: ICD-10, Kapitel V (F) klinisch-diagnostische Leitlinien. Weltgesundheitsorganisation. Huber, BernGoogle Scholar
  23. Durazzo T et al (2006) Brain metabolite concentrations and neurocognition during short-term recovery from alcohol dependence: preliminary evidence of the effects of concurrent chronic cigarette smoking. Alcohol Clin Exp Res 30(3):539–551PubMedCrossRefGoogle Scholar
  24. Ende G et al (2005) Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry 58(12):974–980PubMedCrossRefGoogle Scholar
  25. Garavan H et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11):1789–1798PubMedCrossRefGoogle Scholar
  26. Gardner E (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81(2):263–284PubMedCrossRefGoogle Scholar
  27. Goldstein R et al (2007) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164(1):43–51PubMedCentralPubMedCrossRefGoogle Scholar
  28. Grüsser S, Thalemann C (2006) Verhaltenssucht – Diagnostik, Therapie, Forschung. Huber, BernGoogle Scholar
  29. Grüsser S et al (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175(3):296–302CrossRefGoogle Scholar
  30. Harris G et al (1999) Hypoperfusion of cerebellum and aging effects on cerebral cortex blood flow in abstinent alcoholics: a SPECT study. Alcohol Clin Exp Res 23(7):1219–1227PubMedCentralPubMedGoogle Scholar
  31. Harris G et al (2008) Frontal white matter and cingulum diffusion tensor imaging deficits in alcoholism. Alcohol Clin Exp Res 32(6):1001–1013PubMedCrossRefGoogle Scholar
  32. Heinz A et al (1996) Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch Gen Psychiatry 53(12):1123–1128PubMedCrossRefGoogle Scholar
  33. Heinz A, Higley J et al (1998a) In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am J Psychiatry 155(8):1023–1028PubMedGoogle Scholar
  34. Heinz A, Ragan P et al (1998b) Reduced serotonin transporters in alcoholism. Am J Psychiatry 155:1544–1549PubMedGoogle Scholar
  35. Heinz A et al (2000) A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47(7):643–649PubMedCrossRefGoogle Scholar
  36. Heinz A, Mann K, Weinberger D (2001) Serotonergic dysfunction, negative mood states, and response to alcohol. Alcohol Clin Exp Res 25:487–495PubMedCrossRefGoogle Scholar
  37. Heinz A, Jones D et al (2003a) Serotonin transporter availability correlates with alcohol intake in non-human primates. Mol Psychiatry 8(2):231–234PubMedCrossRefGoogle Scholar
  38. Heinz A, Löber S et al (2003b) Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol 38(1):35–39PubMedCrossRefGoogle Scholar
  39. Heinz A et al (2004) Correlation between dopamine D-2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161: 1783–1789PubMedCrossRefGoogle Scholar
  40. Heinz A, Reimold M et al (2005a) Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving. Arch Gen Psychiatry 62:57–64PubMedCrossRefGoogle Scholar
  41. Heinz A, Siessmeier T et al (2005b) Correlation of alcohol craving with striatal dopamine synthesis capacity and D-2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162:1515–1520PubMedCrossRefGoogle Scholar
  42. Heinz A et al (2007) Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 31(7):1138–1147PubMedCrossRefGoogle Scholar
  43. Heinz A, Beck A, Grüsser S et al (2009a) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14(1):108–118PubMedCentralPubMedCrossRefGoogle Scholar
  44. Heinz A, Beck A, Wrase J et al (2009b) Neurotransmitter systems in alcohol dependence. Pharmacopsychiatry 42(Suppl 1):S95–S101PubMedCrossRefGoogle Scholar
  45. Hermann D et al (2012) Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry 71:1015–1021PubMedCrossRefGoogle Scholar
  46. Hinckers A et al (2006) Low level of response to alcohol as associated with serotonin transporter genotype and high alcohol intake in adolescents. Biol Psychiatry 60(3):282–287PubMedCrossRefGoogle Scholar
  47. Hommer D et al (1996) Decreased corpus callosum size among alcoholic women. Arch Neurol 53(4): 359–363PubMedCrossRefGoogle Scholar
  48. Hommer D et al (2001) Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry 158(2):198–204PubMedCrossRefGoogle Scholar
  49. Hurd Y et al (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neurosci Lett 109(1–2):227–233PubMedCrossRefGoogle Scholar
  50. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78PubMedCentralPubMedCrossRefGoogle Scholar
  51. Jagannathan N, Desai N, Raghunathan P (1996) Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Reson Imaging 14(5):553–557PubMedCrossRefGoogle Scholar
  52. Joutsa J et al (2011) Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res 194(3):340–346PubMedCrossRefGoogle Scholar
  53. Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27(2):232–243PubMedCrossRefGoogle Scholar
  54. Koob GF (2008) Hedonic homeostatic dysregulation as a driver of drug-seeking behavior. Drug Discov Today Dis Model 5(4):207–215CrossRefGoogle Scholar
  55. Kosten T, George T (2002) The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1(1):13–20PubMedCentralPubMedCrossRefGoogle Scholar
  56. Kreek M (2008) Neurobiology of opiates and opioids. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment, 4th edn. American Psychiatric Publishing, Washington, pp 247–264Google Scholar
  57. Kril J et al (1997) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79(4):983–998PubMedCrossRefGoogle Scholar
  58. Krystal J et al (2006) Gamma-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch Gen Psychiatry 63(9):957–968PubMedCrossRefGoogle Scholar
  59. Laakso M et al (2000) A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism. Behav Brain Res 109(2):177–186PubMedCrossRefGoogle Scholar
  60. Lane S et al (2010) Diffusion tensor imaging and decision making in cocaine dependence. PLoS ONE 5(7): e11591PubMedCentralPubMedCrossRefGoogle Scholar
  61. Lee E et al (2007) Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport 18(14):1511–1514PubMedCrossRefGoogle Scholar
  62. Licata S, Renshaw P (2010) Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 1187:148–171PubMedCentralPubMedCrossRefGoogle Scholar
  63. Lou M et al (2012) Cue-elicited craving in heroin addicts at different abstinent time: an fMRI pilot study. Subst Use Misuse 47:631–639PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lubman D et al (2009) Responsiveness to drug cues and natural rewards in opiate addiction: associations with later heroin use. Arch Gen Psychiatry 66(2):205–212PubMedCrossRefGoogle Scholar
  65. Mann K et al (1992) Do women develop alcoholic brain damage more readily than men? Alcohol Clin Exp Res 16(6):1052–1056PubMedCrossRefGoogle Scholar
  66. Mann K et al (1993) The reversibility of alcoholic brain damage is not due to rehydration: a CT study. Addiction (Abingdon, England) 88(5):649–653CrossRefGoogle Scholar
  67. Mann K et al (2005) Neuroimaging of gender differences in alcohol dependence: are women more vulnerable? Alcohol Clin Exp Res 29(5):896–901PubMedCrossRefGoogle Scholar
  68. Martin P et al (1995) Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcohol Clin Exp Res 19(4):1078–1082PubMedCrossRefGoogle Scholar
  69. Moselhy H, Georgiou G, Kahn A (2001) Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 36(5):357–368PubMedCrossRefGoogle Scholar
  70. Myrick H et al (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65(4):466–475PubMedCentralPubMedCrossRefGoogle Scholar
  71. Oscar-Berman M, Marinkovic K (2003) Alcoholism and the brain: an overview. Alcohol Res Health 27(2): 125–133PubMedGoogle Scholar
  72. Oscar-Berman M, Marinkovic K (2007) Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev 17:239–257PubMedCentralPubMedCrossRefGoogle Scholar
  73. Park SQ et al (2010) Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci 30(22):7749–7753PubMedCentralPubMedCrossRefGoogle Scholar
  74. Paulus M, Tapert S, Schuckit M (2005) Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62(7):761–768PubMedCrossRefGoogle Scholar
  75. Pfefferbaum A et al (1996) Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol Clin Exp Res 20(4):752–757PubMedCrossRefGoogle Scholar
  76. Pfefferbaum A et al (1997) Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin Exp Res 21(3): 521–529PubMedCrossRefGoogle Scholar
  77. Pfefferbaum A, Adalsteinsson E, Sullivan E (2006) Dysmorphology and microstructural degradation of the corpus callosum: interaction of age and alcoholism. Neurobiol Aging 27(7):994–1009PubMedCrossRefGoogle Scholar
  78. Potenza M (2006) Should addictive disorders include non-substance-related conditions? Addiction (Abingdon, England) 101(Suppl):142–151CrossRefGoogle Scholar
  79. Potenza M (2008) Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc B-Biol Sci 363(1507):3181–3189CrossRefGoogle Scholar
  80. Reuter J et al (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8(2):147–148PubMedCrossRefGoogle Scholar
  81. Robinson T, Berridge K (1993) The neural basis of drug craving - an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291PubMedCrossRefGoogle Scholar
  82. Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10(4):191–247PubMedGoogle Scholar
  83. Saß H et al (2003) Diagnostisches und Statistisches Manual Psychischer Störungen DSM-IV-TR. Hogrefe, GöttingenGoogle Scholar
  84. Schroth G et al (1988) Reversible brain shrinkage in abstinent alcoholics, measured by MRI. Neuroradiology 30(5):385–389PubMedCrossRefGoogle Scholar
  85. Schuckit M, Smith T (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 53(3):202–210PubMedCrossRefGoogle Scholar
  86. Schuckit M et al (1998) The clinical course of alcohol-related problems in alcohol dependent and nonalcohol dependent drinking women and men. J Stud Alcohol 59(5):581–590PubMedGoogle Scholar
  87. Schuckit M et al (1999) Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABA alpha 6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study. Biol Psychiatry 45(5):647–651PubMedCrossRefGoogle Scholar
  88. Schulte T et al (2005) Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb Cortex 15(9):1384–1392PubMedCrossRefGoogle Scholar
  89. Schultz W, Dayan P, Montague P (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  90. Seitz D et al (1999) Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics. Alcohol Clin Exp Res 23(1):158–163PubMedCrossRefGoogle Scholar
  91. Siegel S (1983) No title. In classical conditioning, drug tolerance and drug dependence. In: Israel I, Glaser FB et al (eds) Research advances in alcohol and drug problems. Plenum Press, New York, pp 207–246CrossRefGoogle Scholar
  92. Smith M et al (1988) Brain hydration during alcohol withdrawal in alcoholics measured by magnetic resonance imaging. Drug Alcohol Depend 21(1):25–28PubMedCrossRefGoogle Scholar
  93. Sullivan E (2000) Neuropsychological vulnerability to alcoholism: evidence from neuroimaging studies. In: Noronha A, Eckardt M, Warren K (eds) Review of NIAAA’s neuroscience and behavioral research. NIAAA, Bethesda, pp 473–508, Monograph No. 34Google Scholar
  94. Sullivan E et al (1995) Anterior hippocampal volume deficits in nonamnesic, aging chronic alcoholics. Alcohol Clin Exp Res 19(1):110–122PubMedCrossRefGoogle Scholar
  95. Tsai G, Gastfriend D, Coyle J (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340PubMedGoogle Scholar
  96. Umhau J et al (2010) Effect of acamprosate on magnetic resonance spectroscopy measures of central glutamate in detoxified alcohol-dependent individuals: a randomized controlled experimental medicine study. Arch Gen Psychiatry 67(10):1069–1077PubMedCentralPubMedCrossRefGoogle Scholar
  97. van Holst R et al (2012) A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend 124:142–148PubMedCrossRefGoogle Scholar
  98. Vion-Dury J et al (1994) What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 241(6):354–371PubMedCrossRefGoogle Scholar
  99. Volkow N et al (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177PubMedCrossRefGoogle Scholar
  100. Volkow N et al (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 20:1594–1598PubMedCrossRefGoogle Scholar
  101. Volpicelli J et al (1995) Effect of naltrexone on alcohol “high” in alcoholics. Am J Psychiatry 152(4): 613–615PubMedGoogle Scholar
  102. Wrase J et al (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35(2):787–794PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations