Abstract
Malware analysis forms a critical component of cyber defense mechanism. In the last decade, lot of research has been done, using machine learning methods on both static as well as dynamic analysis. Since the aim and objective of malware developers have changed from just for fame to political espionage or financial gain, the malware is also getting evolved in its form, and infection methods. One of the latest form of malware is known as targeted malware, on which not much research has happened. Targeted malware, which is a superset of Advanced Persistent Threat (APT), is growing in its volume and complexity in recent years. Targeted Cyber attack (through targeted malware) plays an increasingly malicious role in disrupting the online social and financial systems. APTs are designed to steal corporate / national secrets and/or harm national/corporate interests. It is difficult to recognize targeted malware by antivirus, IDS, IPS and custom malware detection tools. Attackers leverage compelling social engineering techniques along with one or more zero day vulnerabilities for deploying APTs. Along with these, the recent introduction of Crypto locker and Ransom ware pose serious threats to organizations/nations as well as individuals. In this paper, we compare various machine-learning techniques used for analyzing malwares, focusing on static analysis.
Keywords
- Malware
- Static Analysis
- Machine Learning
- Advanced Persistent Threat
- Cyber Defence
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
The ‘ICEFOG’ APT: A tale of cloak and three daggers. Kaspersky Lab Global Research And Analysis Team(GREAT) (2013)
Balduzzi, M., Ciangaglini, V., McArdle, R.: Targeted attacks detection with spunge. Trend Micro Research, EMEA (2013)
Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware trojans (2013)
Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: The cousins of stuxnet: Duqu, flame, and gauss. Future Internet 4(4), 971–1003 (2012)
Bilar, D.: Opcodes as predictor for malware. International Journal of Electronic Security and Digital Forensics 1(2), 156–168 (2007)
Blonce, A., Filiol, E., Frayssignes, L.: Portable document format (pdf) security analysis and malware threats. Tech. rep., Virology and Cryptology Laboratory, French Army Signals Academy (2008)
Cohen, W.W.: Fast effective rule induction. ICML 95, 115–123 (1995)
Desnos, A., Erra, R., Filiol, E.: Processor-dependent malware... and codes. arXiv preprint arXiv:1011.1638 (2010)
Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware type recognition and cyber situational awareness. In: Second International Conference on Social Computing (SocialCom), pp. 938–943. IEEE (2010)
Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware target recognition via static heuristics. Computers & Security 31(1), 137–147 (2012)
Dube, T.E.: A Novel Malware Target Recognition Architecture for Enhanced Cyberspace Situation Awareness. Ph.D Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (September 2011)
Dube, T.E., Raines, R.A., Grimaila, M.R., Bauer, K., Rogers, S.: Malware target recognition of unknown threats. IEEE Systems Journal 7(3) (September 2013)
Dube, T.E., Raines, R.A., Rogers, S.K.: Malware target recognition. US Patent 20, 120, 260, 342 (October 11, 2012)
Filiol, E.: Formalisation and implementation aspects of k-ary (malicious) codes. Journal in Computer Virology 3(2), 75–86 (2007)
Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not) binaries. arXiv preprint arXiv:1009.4000 (2010)
Filiol, E., Helenius, M., Zanero, S.: Open problems in computer virology. Journal in Computer Virology 1(3-4), 55–66 (2006)
Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. The Journal of Machine Learning Research 7, 2721–2744 (2006)
Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research 8, 2755–2790 (2007)
Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478. ACM (2004)
Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 449–456. ACM (2005)
Li, F., Lai, A., Ddl, D.: Evidence of advanced persistent threat: A case study of malware for political espionage. In: 6th International Conference on Malicious and Unwanted Software (Malware), pp. 102–109. IEEE (2011)
Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels: Lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009)
Liu, S.-T., Chen, Y.-M., Hung, H.-C.: N-victims: An approach to determine n-victims for apt investigations. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 226–240. Springer, Heidelberg (2012)
Lu, Y., Din, S., Zheng, C., Gao, B.: Using multi-feature and classifier ensembles to improve malware detection. Journal of CCIT 39(2), 57–72 (2010)
Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE Security & Privacy 5(2), 40–45 (2007)
McDonald, G., Murchu, L.O., Doherty, S., Chien, E.: Stuxnet 0.5: The missing link. Symantec Security Response (online) 26 (2013)
Menn, J.: Key internet operator verisign hit by hackers. Reuters (February 2, 2012)
Muttik, I.: Zero-day malware. In: Virus Bulletin Conference (2010)
Prosecutors, Public: Messiah spyware infects middle east targets
Rafiq, N., Mao, Y.: Improving heuristics. In: Virus Bulletin Conference, pp. 9–12 (2008)
Raymond, D., Conti, G., Cross, T., Fanelli, R.: A control measure framework to limit collateral damage and propagation of cyber weapons. In: Fifth International Conference on Cyber Conflict (CyCon), pp. 1–16. IEEE (2013)
Santos, I., Brezo, F., Sanz, B., Laorden, C., Bringas, P.G.: Using opcode sequences in single-class learning to detect unknown malware. IET Information Security 5(4), 220–227 (2011)
Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as representation of executables for data-mining-based unknown malware detection. Information Sciences (2011)
Santos, I., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware detection. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on DCAI. AISC, vol. 91, pp. 415–422. Springer, Heidelberg (2011)
Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 38–49. IEEE (2001)
Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey. Information Security Technical Report 14(1), 16–29 (2009)
Shafiq, M., Tabish, S., Farooq, M.: Pe-probe: leveraging packer detection and structural information to detect malicious portable executables. In: Proceedings of the Virus Bulletin Conference (VB), pp. 29–33 (2009)
Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: A framework for efficient mining of structural information to detect zero-day malicious portable executables. Tech. rep., TR-nexGINRC-2009-21 (January 2009), http://www.nexginrc.org/papers/tr21-zubair.pdf
Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: Pe-miner: mining structural information to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009)
Sood, A., Enbody, R.: Targeted cyber attacks-a superset of advanced persistent threats. In: IEEE Computer and Reliability Societies, Michigan State University (2013)
Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Gpu-assisted malware. In: 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), pp. 1–6. IEEE (2010)
White, S.R.: Open problems in computer virus research. In: Virus Bulletin Conference (1998)
Zetter, K.: Google hack attack was ultra sophisticated, new details show. Wired Magazine 14 (2010)
Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based on ensemble learning. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 468–477. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nath, H.V., Mehtre, B.M. (2014). Static Malware Analysis Using Machine Learning Methods. In: Martínez Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds) Recent Trends in Computer Networks and Distributed Systems Security. SNDS 2014. Communications in Computer and Information Science, vol 420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54525-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-54525-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54524-5
Online ISBN: 978-3-642-54525-2
eBook Packages: Computer ScienceComputer Science (R0)