Advertisement

Heuristic-Driven Theory Projection: An Overview

  • Martin Schmidt
  • Ulf Krumnack
  • Helmar Gust
  • Kai-Uwe Kühnberger
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 548)

Abstract

This chapter provides a concise overview of Heuristic-Driven Theory Projection (HDTP), a powerful framework for computing analogies. The chapter attempts to illuminate HDTP from several different perspectives. On the one hand, the syntactic basis of HDTP is formally specified, in particular, restricted higher-order anti-unification together with a complexity measure is described as the core process to compute a generalization given two input domains (source and target). On the other hand, the substitution-governed alignment and mapping process is analyzed together with the transfer of knowledge from source to target in order to induce hypotheses on the target domain. Additionally, this chapter presents some core ideas concerning the semantics of HDTP as well as the algorithm that computes analogies given two input domains. Finally, some further remarks describe the different (but important) roles heuristics play in this framework.

References

  1. 1.
    Chalmers, D.J., French, R.M., Hofstadter, D.R.: High-level perception, representation, and analogy: a critique of artificial intelligence methodology. J. Exp. Theor. Artif. Intell. 4(3), 185–211 (1992)CrossRefGoogle Scholar
  2. 2.
    Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm and examples. Artif. Intell. 41(1), 1–63 (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Forbus, K.D., Gentner, D., Markman, A.B., Ferguson, R.W.: Analogy just looks like high-level perception: why a domain-general approach to analogical mapping is right. J. Exp. Theor. Artif. Intell. 10, 231–257 (1998)CrossRefGoogle Scholar
  4. 4.
    Furtado, A.L.: Analogy by generalization-and the quest of the grail. SIGPLAN Not. 27(1), 105–113 (1992)Google Scholar
  5. 5.
    Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7(2), 155–170 (1983)CrossRefGoogle Scholar
  6. 6.
    Gentner, D.: The Mechanism of Analogical Learning. In: Vosniadou, S., Ortony, A. (eds.) Similarity and analogical reasoning, pp. 199–241. Cambridge University Press, New York (1989)CrossRefGoogle Scholar
  7. 7.
    Gentner, D., Forbus, K.D.: Computational models of analogy. Wiley interdisciplinary reviews. Cogn. Sci. 2(3), 266–276 (2010)Google Scholar
  8. 8.
    Guarini, M., Butchart, A., Smith, P.S., Moldovan, A.: Resources for research on analogy: a multi-disciplinary guide. Informal Log. 29(2), 84–197 (2009)Google Scholar
  9. 9.
    Guhe, M., Pease, A., Smaill, A., Schmidt, M., Gust, H., Kühnberger, K.U., Krumnack, U.: Mathematical reasoning with higher-order anti-unification. In: Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1992–1997. Cognitive Science Society, Austin, TX (2010)Google Scholar
  10. 10.
    Gust, H., Krumnack, U., Kühnberger, K.U., Schwering, A.: Analogical reasoning: A core of cognition. Zeitschrift für Künstliche Intelligenz (KI), Themenheft KI und Kognition 1, 8–12 (2008)Google Scholar
  11. 11.
    Gust, H., Kühnberger, K.U., Schmid, U.: Metaphors and heuristic-driven theory projection (HDTP). Theoret. Comput. Sci. 354(1), 98–117 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hasker, R.W.: The replay of program derivations. Ph. D thesis, University of Illinois at Urbana-Champaign (1995)Google Scholar
  13. 13.
    Heinz, B.: Anti-Unifikation Modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung. R. Oldenbourg Verlag, Wien (1996)MATHGoogle Scholar
  14. 14.
    Hirata, K.: A note on rule-finding abduction. Research Institute of Fundamental Information Science. Kyushu University, technical report (1994)Google Scholar
  15. 15.
    Hirowatari, E., Arikawa, S.: Partially isomorphic generalization and analogical reasoning. In: Proceedings of European Conference on Machine Learning (1994), Lecture Notes in Artificial Intelligence, vol. 784, pp. 363–366 (1994)Google Scholar
  16. 16.
    Hirowatari, E., Arikawa, S.: Partially isomorphic generalization and analogical reasoning. In: Proceedings of the European Conference on Machine Learning (ECML) 94. Lecture Notes in Computer Science, vol. 784, pp. 363–366. Springer (1994)Google Scholar
  17. 17.
    Hofstadter, D.R., Mitchell, J.: The copycat project: a model of mental fluidity and analogy-making. In: Hofstadter, D.R., Fluid Analogies Research Group (eds.) Fluid Concepts and Creative Analogies, pp. 205–267. Basic Books, New York (1995)Google Scholar
  18. 18.
    Holyoak, K., Morrison, R. (eds.): The Cambridge Handbook on Thinking and Reasoning. Cambridge University Press, Cambridge (2005)Google Scholar
  19. 19.
    Indurkhya, B.: Metaphor and Cognition. Kluver, Dodrecht (1992)CrossRefGoogle Scholar
  20. 20.
    Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.U.: Restricted higher-order anti-unification for analogy making. In: AI 2007: Advances in Artificial Intelligence. Lecture Notes of Artificial Intelligence, vol. 4830, pp. 273–282. Springer, Berlin (2007)Google Scholar
  21. 21.
    Kurzen, L.M.: Analogy and Bisimulation: A Comparison of Indurkhya’s Cognitive Models and Heuristic-Driven Theory Projection, PICS (Publications of the Institute of Cognitive Science), vol. 2005–10. University of Osnabrück, Osnabrück (2005).Google Scholar
  22. 22.
    Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19, 113–126 (1976)Google Scholar
  23. 23.
    Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)MathSciNetGoogle Scholar
  24. 24.
    Reynolds, J.: Transformational systems and the algebraic structure of atomic formulas. Mach. Intell. 5, 135–153 (1970)Google Scholar
  25. 25.
    Robere, R., Besold, T.R.: Complex analogies: Remarks on the complexity of HDTP. In: Thielscher, M., Zhang, D. (eds.) Australasian Conference on Artificial Intelligence. Lecture Notes in Computer Science, vol. 7691, pp. 530–542. Springer (2012)Google Scholar
  26. 26.
    Rutherford, E.: The scattering of \(\alpha \) and \(\beta \) particles by matter and the structure of the atom. Philos. Mag. Series 6(21), 669–688 (1911)CrossRefGoogle Scholar
  27. 27.
    Schmidt, M.: Restricted Higher-Order Anti-Unification for Heuristic-Driven Theory Projection, PICS (Publications of the Institute of Cognitive Science), vol. 2010–31. University of Osnabrück, Osnabrück (2010).Google Scholar
  28. 28.
    Schmidt, M., Krumnack, U., Kühnberger, K.U., Gust, H.: Refinements of restricted higher-order anti-unification for heuristic-driven theory projection. In: Bach, J., Edelkamp, S. (eds.) KI 2011: Advances in Artificial Intelligence 34th Annual German Conference on AI, Berlin, Germany, Oct 4–7, 2011. Proceedings, Lecture Notes in Computer Science, vol. 7006/2011, pp. 289–300. Springer, Berlin (2011)Google Scholar
  29. 29.
    Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H.: Syntactic principles of Heuristic-driven theory projection. Special issue on analogies—integrating cognitive abilities. J. Cogn. Syst. Res. 10(3), 251–269 (2009)Google Scholar
  30. 30.
    Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H. (eds.): Investigating Experimentally Problem Solving Strategies in Geometric Proportional Analogies, Publications of the Institute of Cognitive Science, vol. 30–2010. Institute of Cognitive Science, Osnabrück (2010)Google Scholar
  31. 31.
    Vosniadou, S., Ortony, A.: Similarity and Analogical Reasoning. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Schmidt
    • 1
  • Ulf Krumnack
    • 1
  • Helmar Gust
    • 1
  • Kai-Uwe Kühnberger
    • 1
  1. 1.Institute of Cognitive ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations