Issues in Analogical Inference Over Sequences of Symbols: A Case Study on Proper Name Transliteration

Part of the Studies in Computational Intelligence book series (SCI, volume 548)


Formal analogies, that is, proportional analogies involving relations at a formal level (e.g. cordially is to cordial as appreciatively is to appreciative) have a long history in Linguistics. They can accommodate a wide variety of linguistic data without resorting to ad hoc representations and are inherently good at capturing long range dependencies between data. Unfortunately, applying analogical learning on top of formal analogy to current Natural Language Processing (NLP) tasks, which often involve massive amount of data, is quite challenging. In this chapter, we draw on our previous works and identify some issues that remain to be addressed for formal analogy to stand by itself in the landscape of NLP. As a case study, we monitor our current implementation of analogical learning on a task of transliterating English proper names into Chinese.



This work has been partially founded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We are grateful to the anonymous reviewers of the short paper submitted to the 2012 SAMAI workshop, as well as those that reviewed this article. We found one review in particular especially inspiring.


  1. 1.
    Turney, P., Littman, M.: Corpus-based learning of analogies and semantic relations. Mach. Learn. 60, 251–278 (2005)CrossRefGoogle Scholar
  2. 2.
    Duc, N.T., Bollegala, D., Ishizuka, M.: Cross-language latent relational search: mapping knowledge across languages. In: AAAI’11, pp. 1237–1242 (2011)Google Scholar
  3. 3.
    Marshall, J.B.: A self-watching model of analogy-making and perception. J. Exp. Theor. Artif. Intell. 18(3), 267–307 (2002)CrossRefGoogle Scholar
  4. 4.
    Hofstadter, D.R.: The Copycat Project: An Experiment in Nondeterminism and Creative Analogies, vol. 755. Massachusetts Institute of Technology, Cambridge (1984)Google Scholar
  5. 5.
    Mitchell, M.: Analogy-Making as Perception. MIT Press/Bradford Books, Cambridge (1993)Google Scholar
  6. 6.
    Yvon, F.: Paradigmatic cascades: a linguistically sound model of pronunciation by analogy. In: Proceedings of 35th ACL, pp. 429–435 (1997)Google Scholar
  7. 7.
    Lepage, Y., Shin-ichi, A.: Saussurian analogy: a theoretical account and its application. In: 7th COLING, pp. 717–722 (1996)Google Scholar
  8. 8.
    Yvon, F.: Finite-state machines solving analogies on words. Technical Report D008, École Nationale Supérieure des Télécommunications (2003)Google Scholar
  9. 9.
    Yvon, F., Stroppa, N., Delhay, A., Miclet, L.: Solving analogies on words. Technical Report D005, École Nationale Supérieure des Télécommuncations, Paris, France (2004)Google Scholar
  10. 10.
    Stroppa, N., Yvon, F.: Formal Models of Analogical Proportions. Available on HAL Portal (2007)Google Scholar
  11. 11.
    Miclet, L., Bayroudh, S., Delhay, A.: Analogical dissimilarity: definitions, algorithms and two experiments in machine learning. J. Artif. Intell. Res. 32, 793–824 (2008)Google Scholar
  12. 12.
    Ben Hassena, A.: Apprentissage analogique par analogie de structures d’arbres. Ph.D. thesis, University de Rennes I, France (2011)Google Scholar
  13. 13.
    Bhargava, A., Kondrak, G.: How do you pronounce your name? improving g2p with transliterations. In: 49th ACL/HLT, Portland, USA, pp. 399–408 (2011)Google Scholar
  14. 14.
    Lavallée, J.F., Langlais, P.: Moranapho: un système multilingue d’analyse morphologique basé sur l’analogie formelle. TAL 52, 17–44 (2011)Google Scholar
  15. 15.
    Kurimo, M., Virpioja, S., Turunen, V., Blackwood, G., Byrne, W.: Overview and results of morpho challenge. In: 10th Workshop of the Cross-Language Evaluation Forum (CLEF 2009). Lecture Notes in Computer Science, pp. 578–597 (2009)Google Scholar
  16. 16.
    Creutz, M., Lagus, K.: Inducing the morphological lexicon of a natural language from unan-notated text. In: International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (AKRR’05), Espoo, Finland, pp. 106–113 (2005)Google Scholar
  17. 17.
    Spiegler, S.: Emma: A novel evaluation metric for morphological analysis—experimental results in detail. Technical Report CSTR-10-004, University of Bristol, Bristol (2010)Google Scholar
  18. 18.
    Stroppa, N., Yvon, F.: An analogical learner for morphological analysis. In: 9th Conference on Computational Natural Language Learning (CoNLL), Ann Arbor, USA, pp. 120–127 (2005)Google Scholar
  19. 19.
    van den Bosch, A., Daelemans, W.: Data-oriented methods for grapheme-to-phoneme conversion. In: EACL, Utrecht, Netherlands, pp. 45–53 (1993)Google Scholar
  20. 20.
    Lepage, Y., Denoual, E.: Purest ever example-based machine translation: detailed presentation and assesment. Mach. Translat 19, 25–252 (2005)Google Scholar
  21. 21.
    Lepage, Y., Lardilleux, A., Gosme, J.: The greyc translation memory for the iwslt 2009 evaluation campaign: one step beyond translation memory. In: 6th IWSLT, Tokyo, Japan, pp. 45–49 (2009)Google Scholar
  22. 22.
    Langlais, P., Patry, A.: Translating unknown words by analogical learning. In: EMNLP, Prague, Czech Republic, pp. 877–886 (2007)Google Scholar
  23. 23.
    Denoual, E.: Analogical translation of unknown words in a statistical machine translation framework. In: MT Summit XI, Copenhagen, Denmark, pp. 135–141 (2007)Google Scholar
  24. 24.
    Langlais, P., Yvon, F., Zweigenbaum, P.: Improvements in analogical learning: application to translating multi-terms of the medical domain. In: 12th EACL, Athens, pp. 487–495 (2009)Google Scholar
  25. 25.
    Koehn, P.: Pharaoh: a beam search decoder for phrase-based statistical machine translation models. In: 6th AMTA, Washington DC (2004)Google Scholar
  26. 26.
    Somers, H., Sandapat, S., Naskar, S.K.: A review of ebmt using proportional analogies. In: 3rd Workshop on Example-Based Machine Translation, Dublin, Ireland, pp. 53–60 (2009)Google Scholar
  27. 27.
    Gosme, J., Lepage, Y.: Structure des trigrammes inconnus et lissage par analogie. In: 18e TALN, Montpellier, France (2011)Google Scholar
  28. 28.
    Claveau, V., L’Homme, M.C.: Structuring terminology by analogy-based machine learning. In: 7th International Conference on Terminology and Knowledge Engineering, Copenhagen, Denmark (2005)Google Scholar
  29. 29.
    Moreau, F., Claveau, V., Sébillot, P.: Automatic morphological query expansion using analogy-based machine learning. In: 29th European conference on IR research (ECIR’07), Berlin, Heidelberg, pp. 222–233 (2007)Google Scholar
  30. 30.
    Correa, W.F., Prade, H., Richard, G.: When intelligence is just a matter of copying. In: ECAI’12, pp. 276–281 (2012)Google Scholar
  31. 31.
    Langlais, P., Yvon, F.: Scaling up analogical learning. Technical report, Paritech, INFRES, IC2, Paris, France (2008)Google Scholar
  32. 32.
    Stroppa, N.: Définitions et caractérisations de modèles à base d’analogies pour l’apprentissage automatique des langues naturelles. Ph.D. thesis, Telecom Paris, ENST, Paris, France (2005)Google Scholar
  33. 33.
    Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: 40th ACL, Philadelphia, USA, pp. 1–8 (2002)Google Scholar
  34. 34.
    Lepage, Y., Lardilleux, A.: The greyc translation memory for the iwslt 2007 evaluation campaign. In: 4th IWSLT, Trento, Italy, pp. 49–54 (2008)Google Scholar
  35. 35.
    Ando, S., Lepage, Y.: Linguistic structure analysis by analogy: Its efficiency. In: NLPRS, Phuket, Thailand, pp. 401–406 (1997)Google Scholar
  36. 36.
    Dandapat, S., Morrissey, S., Naskar, S.K., Somers, H.: Mitigating problems in analogy-based ebmt with smt and vice versa: a case study with named entity transliteration. In: PACLIC, Sendai, Japan (2010)Google Scholar
  37. 37.
    Li, H., Kumaran, A., Pervouchine, V., Zhang, M.: Report of news 2009 machine transliteration shared task. In: Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration. NEWS ’09, pp. 1–18 (2009)Google Scholar
  38. 38.
    Langlais, P.: Formal analogy for natural language processing: a review of issues to be adressed. In: 1st International Workshop Similarity and Analogy-based Methods in AI (ECAI Workshop), Montpellier, France, pp. 49–55 (2012)Google Scholar
  39. 39.
    Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37, 277–296 (1999)CrossRefMATHGoogle Scholar
  40. 40.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  41. 41.
    Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, pp. 1–8 (2002)Google Scholar
  42. 42.
    Lepage, Y.: Solving analogies on words: an algorithm. In: COLING-ACL, Montreal, Canada, pp. 728–733 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Université de MontrealMontrealCanada
  2. 2.LIMSI/CNRSUniversité Paris SudOrsayFrance

Personalised recommendations