Advertisement

Analyzing Raven’s Intelligence Test: Cognitive Model, Demand, and Complexity

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 548)

Abstract

Identifying hidden functions and patterns in data and reasoning about them is a relevant part of any inference system. Differential psychologists typically measure humans’ ability to reason by intelligence tests such as Raven’s Standard or Advanced Progressive Matrices test. Human reasoning difficulty, however, for IQ-test items is almost always determined empirically: An item’s difficulty is measured by the number of reasoners who are able to solve it. So far this method has proven successful: Nearly all IQ-Tests are designed this way. Still, it is most desirable to have a computational model that captures the inherent reasoning complexity and allows for a predictive classification of problems. In this article, we first analyze and classify fluid intelligence test items as they are common in tests like Raven’s Standard and Progressive Matrices and Catell’s Culture Fair Test. This functional classification allows us to develop a model in the cognitive architecture ACT-R that solves 66 of 72 problems from both Raven tests. We argue that in addition to visual and formal reasoning difficulty the way information is processed in the modular structure of the human mind should be taken into account. A simpler (but functionally equivalent) version of the APM is developed and tested on humans. Implications for developing a cognitive system that can classify human reasoning systems are discussed.

Keywords

Analogical reasoning Pattern recognition IQ-test problems 

Notes

Acknowledgments

MR’s research was supported by the German Research Foundation (DFG) in the Transregional Collaborative Research Center, SFB/TR 8 within projects R8-[CSPACE] and by a grant from the DFG within the priority program “New Frameworks of Rationality” (SPP 1516). The authors are grateful to Stephanie Schwenke for proof reading and for various discussions above such topics with Philip Stahl.

References

  1. 1.
    Gardner, H.: The Mind’s New Science: A History of the Cognitive Revolution. Basic Books, New York (1987)Google Scholar
  2. 2.
    Simon, T., Binet, A.: Méthodes nouvelles pour le diagnostic du niveau intellectuel des anormaux. L’année Psychol. 11(1), 191–244 (1904)CrossRefGoogle Scholar
  3. 3.
    Wechsler, D.: The Measurement of Adult Intelligence. Williams & Witkins, Baltimore (1939)CrossRefGoogle Scholar
  4. 4.
    Cattell, R.B.: Abilities: Their Structure, Growth, and Action. Houghton Mifflin, New York (1971)Google Scholar
  5. 5.
    Raven, J.C.: Mental tests used in genetic studies: the performance of related individuals on tests mainly educative and mainly reproductive. Master’s thesis, University of London (1936)Google Scholar
  6. 6.
    Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, New Jersy (1972)Google Scholar
  7. 7.
    Cattell, R.: Theory of fluid and crystallized intelligence: a critical experiment. J. Educ. Psycol. 54(1), 1–22 (1963)CrossRefGoogle Scholar
  8. 8.
    Cattell, R.: Are IQ tests intelligent? Psychol. Today 1(10), 56–62 (1968)Google Scholar
  9. 9.
    Wechsler, D., Hardesty, A., Lauber, H., Bondy, C.: Die Messung der Intelligenz Erwachsener: Textband zum Hamburg-Wechsler-Intelligenztest für Erwachsene (Hawie). H. Huber, Stuttgart (1961)Google Scholar
  10. 10.
    Cattell, K., Cattell, A.: Culture Fair Intelligence Test. Institute for Personality and Ability Testing, Champaign (1959)Google Scholar
  11. 11.
    Raven, J.C., Raven, J.C., Court, J.H.: Manual for Ravens Progressive Matrices and Vocabulary Scales. Oxford Psychologists Press, Oxford (2000)Google Scholar
  12. 12.
    Raven, J.C.: Advanced Progressive Matrices, Set II. H. K. Lewis (Distributed in the United States by The Psychological Corporation, San Antonio, TX), London (1962)Google Scholar
  13. 13.
    Carpenter, P.A., Just, M.A., Shell, P.: What one intelligence test measures: a theoretical account of the processing in the raven progressive matrices test. Psychol. Rev. 97(3), 404–431 (1990)CrossRefGoogle Scholar
  14. 14.
    Snow, R.E., Kyllonen, P.C., Marshalek, B.: The topography of ability and learning correlations. Adv. Psychol. Human Intell. 2, 47–103 (1984)Google Scholar
  15. 15.
    Heller, K.A., Kratzmeier, H., Lengfelder, A.: Matrizen-Test-Manual, Band 1. In: von Raven, J.C. (ed.) Ein Handbuch mit deutschen Normen zu den Standard Progressive Matrices. Beltz Test, Göttingen (1998)Google Scholar
  16. 16.
    Evans, T.G.: A program for the solution of a class of geometric-analogy intelligence-test questions. In: Minsky, M.L. (ed.) Semantic Information Processing, pp. 271–351. (1968)Google Scholar
  17. 17.
    Lovett, A., Tomai, E., Forbus, K., Usher, J.: Solving geometric analogy problems through two-stage analogical mapping. Cogn. Sci. 33(3), 1192–1231 (2009)CrossRefGoogle Scholar
  18. 18.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York (1982)Google Scholar
  19. 19.
    McClamrock, R.: Marr’s three levels: a re-evaluation. Mind. Mach. 1(2), 185–196 (1991)CrossRefGoogle Scholar
  20. 20.
    Pylyshyn, Z.: Computation and Cognition. MIT Press, Cambridge (1984)Google Scholar
  21. 21.
    Embretson, S.: A cognitive design system approach to generating valid tests: application to abstract reasoning. Psychol. Methods 3(3), 380–396 (1998)CrossRefGoogle Scholar
  22. 22.
    Green, K.E., Kluever, R.C.: Components of item difficulty of ravenís matrices. J. Gen. Psychol. 119(2), 189–199 (1992)CrossRefGoogle Scholar
  23. 23.
    Mulholland, T.M., Pellegrino, J.W., Glaser, R.: Components of geometric analogy solution. Cogn. Psychol. 12, 252–284 (1980)CrossRefGoogle Scholar
  24. 24.
    Bethell-Fox, C.E., Lohman, D.F., Snow, R.E.: Adaptive reasoning: componential and eye-movement analysis of geometric analogy performance. Intelligence 8, 205–238 (1984)CrossRefGoogle Scholar
  25. 25.
    Primi, R.: Complexity of geometric inductive reasoning tasks: contribution to the understanding of fluid intelligence. Intelligence 30(1), 41–70 (2002)CrossRefGoogle Scholar
  26. 26.
    Stone, B., Day, M.C.: A developmental study of the processes underlying solution of figural matrices. Child Dev. 52, 359–362 (1981)CrossRefGoogle Scholar
  27. 27.
    Matzen Vodegel, L., Van der Molen, M., Dudink, A.: Error analysis of raven test performance. Personality Individ. Differ. 16(3), 433–445 (1994)Google Scholar
  28. 28.
    Chater, N., Hahn, U.: Representational distortion, similarity and the universal law of generalization. In: Proceedings of the Similarity and Categorization Workshop 97, pp. 31–36. University of Edinburgh (1997)Google Scholar
  29. 29.
    Chater, N., Oaksford, M.: The rational analysis of mind and behavior. Synthese 122, 93–131 (2000)CrossRefGoogle Scholar
  30. 30.
    Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applications. Springer, New York (1997)Google Scholar
  31. 31.
    Hahn, U., Chater, N., Richardson, L.B.: Similarity as transformation. Cognition 87(1), 1–32 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Müller, M., van Rooij, I., Wareham, T.: Similarity as tractable transformation. In: Taatgen, N., van Rijn, H. (eds.) Proceedings of the 31st Annual Meeting of the Cognitive Science Society, pp. 49–55. Cognitive Science Society (2009)Google Scholar
  33. 33.
    Gentner, D., Markman, A.B.: Structure mapping in analogy and simmilarity. Am. Psychol. 52(1), 45–56 (1997)CrossRefGoogle Scholar
  34. 34.
    Forbus, K., Usher, J., Lovett, A., Lockwood, K., Wetzel, J.: CogSketch: open-domain sketch understanding for cognitive science research and for education. In: Alvarado, C., Cani, M.P. (eds.) Proceedings of the Fifth Eurographics Workshop on Sketch-Based Interfaces and Modeling. (2008)Google Scholar
  35. 35.
    Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm and examples. Artif. Intell. 41, 1–63 (1989)MATHGoogle Scholar
  36. 36.
    Lovett, A., Forbus, K., Usher, J.: A structure-mapping model of Raven’s progressive matrices. In: Ohlsson, S., Catrambone, R. (eds.) Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 2761–2766. Cognitive Science Society (2010)Google Scholar
  37. 37.
    Cirillo, S., Ström, V.: An anthropomorphic solver for Raven’s progressive matrices. Master’s thesis, Department of Applied InformationTechnology, Chalmers University, Goeteborg, Sweden (2010)Google Scholar
  38. 38.
    Strannegard, C., Cirillo, S., Ström, V.: An anthropomorphic method for progressive matrix problems. Cogn. Syst. Res. 22–23, 35–46 (2013)CrossRefGoogle Scholar
  39. 39.
    Stahl, P., Ragni, M.: Complexity in analogy tasks: an analysis and computational model. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Volume 215 of Frontiers in Artificial Intelligence and Applications, pp. 1041–1042. IOS Press (2010)Google Scholar
  40. 40.
    Ragni, M., Stahl, P., Fangmeier, T.: Cognitive complexity in matrix reasoning tasks. In: Kokinov, B., Karmiloff-Smith, A., Nersessian, N.J. (eds.) European Perspectives on Cognitive Science. New Bulgarian University Press, Sofia (2011)Google Scholar
  41. 41.
    Anderson, J.R.: How can the Human Mind Occur in the Physical Universe?. Oxford University Press, New York (2007)CrossRefGoogle Scholar
  42. 42.
    Kunda, M., McGreggor, K., Goel, A.K.: A computational model for solving problems from the raven’s progressive matrices intelligence test using iconic visual representations. Cogn. Syst. Res. 22–23, 47–66 (2013)CrossRefGoogle Scholar
  43. 43.
    Correa, W.F., Prade, H., Richard, G.: When intelligence is just a matter of copying. In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI. Volume 242 of Frontiers in Artificial Intelligence and Applications, pp. 276–281. IOS Press (2012)Google Scholar
  44. 44.
    Kunda, M., McGreggor, K., Goel, A.K.: Reasoning on the raven’s advanced progressive matrices test with iconic visual representations. In: 34th Annual Conference of the Cognitive Science Society, pp. 1828–1833. Portland, OR (2012)Google Scholar
  45. 45.
    Kunda, M., McGreggor, K., Goel, A.K.: Taking a look (literally!) at the raven’s intelligence test: two visual solution strategies. In: 32nd Annual Conference of the Cognitive Science Society, pp. 1691–1696. Portland, OR (2010)Google Scholar
  46. 46.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  47. 47.
    Anderson, J.R.: The Architecture of Cognition. Harvard University Press, Cambridge (1983)Google Scholar
  48. 48.
    Matzen, L.E., Benz, Z.O., Dixon, K.R., Posey, J., Kroger, J.K., Speed, A.E.: Recreating raven’s: software for systematically generating large numbers of raven-like matrix problems with normed properties. Behav. Res. Methods 42(2), 525–541 (2010)CrossRefGoogle Scholar
  49. 49.
    Heller, K.A., Kratzmeier, H., Lengfelder, A.: Matrizen-Test-Manual, Band 2. In: von Raven, J.C. (ed.) Ein handbuch mit deutschen Normen zu den advanced progressive matrices. Beltz Test, Göttingen (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of FreiburgCenter for Cognitive ScienceFreiburgGermany
  2. 2.Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations