Advertisement

Guerrilla Media: Interactive Social Media

  • Andrej DuhEmail author
  • Sebastian Meznaric
  • Dean Korošak
Part of the Media Business and Innovation book series (MEDIA)

Abstract

In the convergence culture we are witnessing the rise of social or consumer-generated media—social networks, social blogs, weblogs, podcasts, pictures and videos—that increase communication intensity between people. Key properties of social media, such as frequency, immediacy, permanence and interactivity, should also be the key properties of traditional media—television and newspapers. Unfortunately this is rarely the case.

This book chapter focuses on the possibility to use various social media and other informational and data channels for automatic generation of interactive social media news streams. We propose a network representation and the network model of spreadable media content serving as a basis of new application using the notion of persistent context and apply perpetual analytics on social media data streams, where every incoming observation is evaluated against all prior observations. We discuss our Guerrilla media application idea of tapping into collective intelligence and detecting messages from huge amount of social network accounts and spreading them through interactive social media news streams into the digital universe.

Keywords

Convergence culture Consumer generated Social media Perpetual analytics Cross-media semantic Interactivity 

Notes

Acknowledgments

The work that led to this paper was partially financed by the project SEETechnology “Co-operation of SEE science parks for the promotion of transnational market uptake of R&D results and technologies by SMEs” co-funded by South East Europe Transnational Cooperation Programme. The work of one of us (DK) was partly financed within the framework of the operation entitled “Centre for Open Innovation and Research of the University of Maribor”. The operation is co-funded by the European Regional Development Fund and conducted within the framework of the Operational Programme for Strengthening Regional Development Potentials for the period 2007–2013, development priority 1: “Competitiveness of companies and research excellence”, priority axis 1.1: “Encouraging competitive potential of enterprises and research excellence.”

The authors wish to thank Marko and Urška Samec for the infographics design.

References

  1. An, J., Cha, M., Gummadi, K., & Crowcroft, J. (2011). Media landscape in Twitter: A world of new conventions and political diversity. In International AAAI Conference on Weblogs and Social Media Google Scholar
  2. Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (Vol. 1, pp. 492–499).Google Scholar
  3. Bakshy, E., Marlow, C., Rosenn, I., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web (WWW12) (pp. 519–522).Google Scholar
  4. Bandari, R., Asur, S., & Huberman, B. A. (2012). The pulse of news in social media: Forecasting popularity. In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM12).Google Scholar
  5. Blei, M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.CrossRefGoogle Scholar
  6. Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the Third Conference on Applied Natural Language Processing (ANLC92) (pp. 152–155).Google Scholar
  7. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025–1028.CrossRefGoogle Scholar
  8. CERN. (2013). Large Hadron Collider at CERN. Accessed March 2013, from http://public.web.cern.ch/public/en/lhc/Computing-en.html
  9. Cha, M., Pérez, J. A. N., & Haddadi, H. (2012). The spread of media content through blogs. Social Network Analysis and Mining, 2, 249–264.CrossRefGoogle Scholar
  10. Ciulla, F., Mocanu, D., Baronchelli, A., Goncalves, B., Perra, N., & Vespignani, A. (2012). Beating the news using social media: The case study of American Idol. EPJ Data Science, 1, 8.CrossRefGoogle Scholar
  11. FICO. (2013). FICO, Flacon Fraud Manager. Accessed March 2013, from http://www.fico.com/en/Products/DMApps/Pages/FICO-Falcon-Fraud-Manager.aspx
  12. Gillmor, D. (2006). We the media. Grassroots journalism by the people, for the people. London: O’Reilly Media.Google Scholar
  13. Goodall, D. (2013). Accessed July 2013, from http://danielgoodall.com/2009/03/02/owned-bought-and-earned-media/
  14. Grabowicz, P. A., Ramasco, J. J., Moro, E., Pujol, J. M., & Eguiluz, V. M. (2012). Social features of online networks: The strength of intermediary ties in online social media. PLoS One, 7(1), e29358.CrossRefGoogle Scholar
  15. Hull, D. A. (1996). Stemming algorithms: A case study for detailed evaluation. Journal of the American Society for Information Science, 47, 70–84.CrossRefGoogle Scholar
  16. Jenkins, H. (2001, June). Convergence? I Diverge. Technology Review, 104(5), 93.Google Scholar
  17. Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York, NY: New York University Press.Google Scholar
  18. Jenkins, H., Ford, S., & Green, J. (2013). Spreadable media. New York, NY: New York University Press.Google Scholar
  19. Kissmetrics. (2013). A blog about analytics, marketing and testing. Accessed March 2013, from http://blog.kissmetrics.com
  20. Klimek, P., Bayer, W., & Thurner, S. (2011). The blogosphere as an excitable social medium: Richter’s and Omori’s Law in media coverage. Physica A: Statistical Mechanics and its Applications, 390(21–22), 3870–3875.CrossRefGoogle Scholar
  21. Kohlschütter, C., Fankhauser, P., & Nejdl, W. (2010). Boilerplate detection using shallow text features. In Proceedings of WSDM 2010 (pp. 441–450).Google Scholar
  22. Kulshrestha, J., Kooti, F., Nikravesh, A., & Gummadi, K. (2012). Geographic dissection of the Twitter network. In International AAAI Conference on Weblogs and Social Media.Google Scholar
  23. Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108(3), 480–498.CrossRefGoogle Scholar
  24. Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web (WWW10) (pp. 591–600).Google Scholar
  25. Leskovec, J., Backstrom, L., & Kleinberg, J. (2009). Meme-tracking and the dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09) (pp. 497–506).Google Scholar
  26. Lévy, P. (1994). L’Intelligence collective. Pour une anthropologie du cyberspace. La Découverte.Google Scholar
  27. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. PNAS, 102(33), 11623–11628.CrossRefGoogle Scholar
  28. Mayer-Schoenberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work and think. London: John Murray.Google Scholar
  29. McLuhan, M. (1964). Understanding media: The extension of man. Cambridge: MIT Press.Google Scholar
  30. Metaxas, P. T., & Mustafaraj, E. (2012). Social media and the elections. Science, 338, 472–473.CrossRefGoogle Scholar
  31. Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41.CrossRefGoogle Scholar
  32. Morales, G. D., Gionis, A., & Lucchese, C. (2012). From chatter to headlines: Harnessing the real-time web for personalized news recommendation. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM12) (pp. 153–162).Google Scholar
  33. Negroponte, N. (1995). Being digital. London: Hodder & Stoughton.Google Scholar
  34. Pasternack, J., & Roth, D. (2009). Extracting article text from the Web with Maximum subsequence segmentation. In Proceedings of the 18th International Conference on World Wide Web (WWW2009) (pp. 971–980).Google Scholar
  35. Quercia, D., Capra, L., & Crowcroft, J. (2012). The social world of Twitter: Topics, geography, and emotions. In International AAAI Conference on Weblogs and Social Media. Google Scholar
  36. Ranger, C., Raghuraman, R., Penmets, A., Bradski, G., & Kozyrakism, C. (2007). Evaluating MapReduce for multi-core and multiprocessor systems. In IEEE 13th International Symposium on HPCA 2007 (pp. 13–24).Google Scholar
  37. Reynolds, G. (2006, Winter). The rise of guerrilla media. The New Atlantis (pp. 97–111). This article is an excerpt from the book “An Army of Davids” by G. Reynolds.Google Scholar
  38. Rodriguez, M. G., Leskovec, J., & Schölkopf, B. (2013). Structure and dynamics of information pathways in online media. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM13) (pp. 23–32).Google Scholar
  39. Ruan, Y., Purohit, H., Fuhry, D., Parthasarathy, S., & Sheth, A. (2012). Prediction of topic volume on Twitter. In Proceedings of the Fourth International ACM Conference on Web Science. ACM 978-1-4503-1228-8.Google Scholar
  40. Simini, F., Gonzalez, M. C., Maritan, A., & Barabasi, A.-L. (2012). A universal model for mobility and migration patterns. Nature, 484, 96–100.CrossRefGoogle Scholar
  41. Somlo, G. L., & Howe, A. E. (2001). Incremental clustering for profile maintenance in information gathering web agents. In Proceedings of the Fifth International Conference on Autonomous Agents (pp. 262–269).Google Scholar
  42. Stallman, R. (1999). The GNU operating system and the free software movement. In C. DiBona, S. Ockman, & M. Stone (Eds.), Open sources voices from the open source revolution. Sebastopol, CA: O’Reilly.Google Scholar
  43. Sundaram, H., Xie, L., De Choudhury, M., Lin, Y.-R., & Natsev, A. (2012). Multimedia semantics: Interactions between content and community. Proceedings of the IEEE, 100(9), 2737–2758.CrossRefGoogle Scholar
  44. Taber, C. S., & Lodge, M. (2006). Motivated skepticism in the evaluation of political beliefs. American Journal of Political Science, 50(3), 755–769.CrossRefGoogle Scholar
  45. Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of Twitter networks. Social Networks., 34(1), 73–81.CrossRefGoogle Scholar
  46. Tsur, O., & Rappoport, A. (2012). What’s in a hashtag?: Content based prediction of the spread of ideas in microblogging communities. In Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM12) (pp. 643–652).Google Scholar
  47. Ugander, J., Backstrom, L., Marlow, C., & Kleinberg, J. (2012). Structural diversity in social contagion. PNAS, 109, 5962–5966.CrossRefGoogle Scholar
  48. Vanderbilt, T. (2013, April). The Nielsen family is dead. Wired. http://www.wired.com/underwire/2013/03/nielsen-family-is-dead/
  49. Vespignani, A. (2010). Complex networks: The fragility of interdependency. Nature, 464(7291), 984–985. doi: 10.1038/464984a.CrossRefGoogle Scholar
  50. Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What is and why you should care. IDC.Google Scholar
  51. Wang, C., & Huberman, B. A. (2012a). How random are online social interactions? Scientific Reports, 2, 633. doi: 10.1083/srep00633.Google Scholar
  52. Wang, C., & Huberman, B. A. (2012b). Long trend dynamics in social media. EPJ Data Science, 1, 2.CrossRefGoogle Scholar
  53. Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Scientific Report, 2, 335.Google Scholar
  54. Ytreberg, E. (2011). Convergence: Essentially confused? New Media & Society, 13(3), 502–508.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of MariborMariborSlovenia
  2. 2.Clarendon Laboratory, University of OxfordOxfordUK

Personalised recommendations