Skip to main content

Function Follows Dynamics: State-Dependency of Directed Functional Influences

  • Chapter
Directed Information Measures in Neuroscience

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Brain function requires the control of inter-circuit interactions on timescales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity)must be reconfigurable even when the underlying structural connectivity is fixed. Such influences can be quantified through causal analysis of time-series of neural activity with tools like Transfer Entropy. But how can manifold functional networks stem from fixed structures? Considering model systems at different scales, like neuronal cultures or cortical multi-areal motifs, we show that “function and information follow dynamics”, rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different directed functional networks, corresponding to alternative information flow patterns. Here we discuss how suitable generalizations of Transfer Entropy, taking into account switching between collective states of the analyzed circuits, can provide a picture of directed functional interactions in agreement with a “ground-truth” description at the dynamical systems level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Arcangelis, L., Perrone-Capano, C., Herrmann, H.J.: Self-organized criticality model for brain plasticity. Phys. Rev. Lett. 96, 028107 (2006)

    Google Scholar 

  2. Battaglia, D., Brunel, N., Hansel, D.: Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation. Phys. Rev. Lett. 99, 238106 (2007)

    Article  Google Scholar 

  3. Battaglia, D., Hansel, D.: Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Comp. Biol. 7, e1002176 (2011)

    Google Scholar 

  4. Battaglia, D., Witt, A., Wolf, F., Geisel, T.: Dynamic effective connectivity of inter-areal brain circuits. PLoS Comp. Biol. 8, e1002438 (2012)

    Google Scholar 

  5. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. Journal of Neuroscience 23, 11167–11177 (2003)

    Google Scholar 

  6. Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., et al.: Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012)

    Article  Google Scholar 

  7. Bressler, S.L., Seth, A.K.: Wiener-Granger causality: a well established methodology. NeuroImage 58, 323–329 (2011)

    Article  Google Scholar 

  8. Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., Bressler, S.L.: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. USA 101, 9849–9854 (2004)

    Article  Google Scholar 

  9. Brunel, N., Wang, X.J.: What determines the frequency of fast network oscillations with irregular neural discharges? J. Neurophysiol. 90, 415–430 (2003)

    Article  Google Scholar 

  10. Brunel, N., Hansel, D.: How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brunel, N., Hakim, V.: Sparsely synchronized neuronal oscillations. Chaos 18, 015113 (2008)

    Google Scholar 

  12. Buehlmann, A., Deco, G.: Optimal information transfer in the cortex through synchronization. PLoS Comput. Biol. 6(9), 1000934 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. 6, 744–750 (2010)

    Article  Google Scholar 

  14. Cohen, E., Ivenshitz, M., Amor-Baroukh, V., Greenberger, V., Segal, M.: Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res. 1235, 21–30 (2008)

    Article  Google Scholar 

  15. Dayan, P., Abbott, L.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    Google Scholar 

  16. Deco, G., Romo, R.: The role of fluctuations in perception. Trends Neurosci. 31, 591–598 (2008)

    Article  Google Scholar 

  17. Deco, G., Rolls, E.T., Romo, R.: Stochastic dynamics as a principle of brain function. Prog. Neurobiol. 88, 1–16 (2009)

    Article  Google Scholar 

  18. Deco, G., Jirsa, V.K., McIntosh, R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011)

    Article  Google Scholar 

  19. Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. Journal of Neuroscience 32, 3366–3375 (2012)

    Article  Google Scholar 

  20. Ding, M., Chen, Y., Bressler, S.L.: Granger causality: basic theory and application to neuroscience. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis. Wiley, New York (2006)

    Google Scholar 

  21. Ditzinger, T., Haken, H.: Oscillations in the perception of ambiguous patterns: a model based on synergetics. Biol. Cybern. 61, 279–287 (1989)

    Article  MathSciNet  Google Scholar 

  22. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.: Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988)

    Article  Google Scholar 

  23. Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., et al.: The physics of living neural networks. Physics Reports 449, 54–76 (2007)

    Article  MathSciNet  Google Scholar 

  24. Engel, A., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001)

    Article  Google Scholar 

  25. Eytan, D., Marom, S.: Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476 (2006)

    Article  Google Scholar 

  26. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005)

    Article  Google Scholar 

  27. Fraiman, D., Balenzuela, P., Foss, J., Chialvo, D.R.: Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 061922 (2009)

    Google Scholar 

  28. Freyer, F., Roberts, J.A., Becker, R., Robinson, P.A., Ritter, P., et al.: Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361 (2011)

    Article  Google Scholar 

  29. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)

    Article  Google Scholar 

  30. Fries, P., Nikolić, D., Singer, W.: The gamma cycle. Trends Neurosci. 30, 309–316 (2007)

    Article  Google Scholar 

  31. Fries, P., Womelsdorf, T., Oostenveld, R., Desimone, R.: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J. Neurosci. 28, 4823–4835 (2008)

    Article  Google Scholar 

  32. Friston, K.J.: Functional and Effective Connectivity in Neuroimaging: A Synthesis. Human Brain Mapping 2, 56–78 (1994)

    Article  Google Scholar 

  33. Friston, K.J.: Functional and Effective Connectivity: A Review. Brain Connectivity 1, 13–36 (2011)

    Article  Google Scholar 

  34. Garofalo, M., Nieus, T., Massobrio, P., Martinoia, S.: Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One 4, e6482 (2009)

    Google Scholar 

  35. Ghosh, A., Rho, Y., McIntosh, A.R., Ktter, R., Jirsa, V.K.: Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comp. Biol. 4, 1000196 (2008)

    Article  Google Scholar 

  36. Gourévitch, B., Bouquin-Jeannès, R.L., Faucon, G.: Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol. Cybern. 95, 349–369 (2006)

    Article  MATH  Google Scholar 

  37. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  38. Gregoriou, G.G., Gotts, S.J., Zhou, H., Desimone, R.: High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009)

    Article  Google Scholar 

  39. Grienberger, C., Konnerth, A.: Imaging Calcium in Neurons. Neuron 73, 862–885 (2012)

    Article  Google Scholar 

  40. Haken, H., Kelso, J.A., Bunz, H.: A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441, 1–46 (2007)

    Article  Google Scholar 

  42. Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104, 10240–10245 (2007)

    Article  Google Scholar 

  43. Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One 6, e27431 (2011)

    Google Scholar 

  44. Jacobi, S., Soriano, J., Segal, M., Moses, E.: BDNF and NT-3 increase excitatory input connec- tivity in rat hippocampal cultures. Eur. J. Neurosci. 30, 998–1010 (2009)

    Article  Google Scholar 

  45. Levina, A., Herrmann, J.M., Geisel, T.: Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857–860 (2007)

    Article  Google Scholar 

  46. Levina, A., Herrmann, J.M., Geisel, T.: Phase Transitions towards Criticality in a Neural System with Adaptive Interactions. Phys. Rev. Lett. 102, 118110 (2009)

    Article  Google Scholar 

  47. Misic, B., Mills, T., Taylor, M.J., McIntosh, A.R.: Brain noise is task-dependent and region specific. J. Neurophysiol. 104, 2667–2676 (2010)

    Article  Google Scholar 

  48. Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98, 1125–1139 (2007)

    Article  Google Scholar 

  49. Orlandi, J., Stetter, O., Soriano, J., Geisel, T., Battaglia, D.: Transfer Entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PLoS One (in press, 2014)

    Google Scholar 

  50. Politis, D.N., Romano, J.P.: Limit theorems for weakly dependent Hilbert space valued random variables with applications to the stationary bootstrap. Statistica Sinica 4, 461–476 (1994)

    MATH  MathSciNet  Google Scholar 

  51. Salazar, R.F., Dotson, N.M., Bressler, S.L., Gray, C.M.: Content-specific fronto-parietal synchronization during visual working memory. Science 338, 1097–1100 (2012)

    Article  Google Scholar 

  52. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

    Article  Google Scholar 

  53. Seamans, J.K., Yang, C.R.: The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58 (2004)

    Article  Google Scholar 

  54. Soriano, J., Martinez, M.R., Tlusty, T., Moses, E.: Development of input connections in neural cultures. Proc. Natl. Acad. Sci. USA 105, 13758–13763 (2008)

    Article  Google Scholar 

  55. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2, e369 (2004)

    Google Scholar 

  56. Stetter, O., Battaglia, D., Soriano, J., Geisel, T.: Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comp. Biol. 8, e1002653 (2012)

    Google Scholar 

  57. Strong, S.P., Koberle, R., de Ruyter van Steveninck, R.R., Bialek, W.: Entropy and information in neural spike trains. Phys. Rev. Lett. 80, 197–200 (1998)

    Article  Google Scholar 

  58. Tsodyks, M., Uziel, A., Markram, H.: Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, 1–5 (2000)

    Google Scholar 

  59. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)

    Article  Google Scholar 

  60. Vogelstein, J.T., Watson, B.O., Packer, A.M., Yuste, R., Jedynak, B., et al.: Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 97, 636–655 (2009)

    Article  Google Scholar 

  61. Volgushev, M., Chistiakova, M., Singer, W.: Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83, 15–25 (1998)

    Article  Google Scholar 

  62. Wagenaar, D.A., Pine, J., Potter, S.M.: An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience 7, 1–18 (2006)

    Article  Google Scholar 

  63. Wang, X.J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)

    Google Scholar 

  64. Wang, X.J.: Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010)

    Article  Google Scholar 

  65. Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B., Buhl, E.H.: Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336 (2000)

    Article  Google Scholar 

  66. Wiener, N.: The theory of prediction. In: Beckenbach, E. (ed.) Modern Mathematics for Engineers. McGraw-Hill, New York (1956)

    Google Scholar 

  67. Witt, A., Palmigiano, A., Neef, A., El Hady, A., Wolf, F., Battaglia, D.: Controlling oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study. Front Neural Circuits 7, 49 (2013)

    Article  Google Scholar 

  68. Womelsdorf, T., Lima, B., Vinck, M., Oostenveld, R., Singer, W., et al.: Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle. Proc. Natl. Acad. Sci. USA 109, 4302–4307 (2012)

    Article  Google Scholar 

  69. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., Deisseroth, K.: Optogenetics in neural systems. Neuron 71, 9–34 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Battaglia, D. (2014). Function Follows Dynamics: State-Dependency of Directed Functional Influences. In: Wibral, M., Vicente, R., Lizier, J. (eds) Directed Information Measures in Neuroscience. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54474-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54474-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54473-6

  • Online ISBN: 978-3-642-54474-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics