Skip to main content

Natural Heat Engine

  • Chapter
  • First Online:
The Nature of Motive Force

Part of the book series: Heat and Mass Transfer ((HMT))

  • 691 Accesses

Abstract

In this chapter, we study the thermoelectric generator from the perspective of a heat engine, which in turn falls into a class of thermal insulation systems. We employ the method of finite-time thermodynamics to take into account the essential features of a realistic heat engine. We directly look into the geometrical shape and structure of the building blocks of each thermoelectric module of the cascaded assembly that eventually causes a better global performance.

The principles of thermodynamics occupy a special place among the laws of Nature. For this there are two reasons: in the first place, their validity is subject only to limitations which, though not, perhaps themselves negligibly small, are at any rate minimal in comparison with many other laws of Nature; and in the second place, there is no natural process to which they cannot be applied.

W. Nerst

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bejan, A.: Advanced Engineering Thermodynamics, pp. 665–682. Wiley, New York (2006)

    Google Scholar 

  2. Bridgman, P.W.: Thermoelectric phenomena in crystals and general electrical concepts. Phys. Rev. 31, 221–235 (1928)

    Article  Google Scholar 

  3. Goldsmid, H.J.: Thermoelectric Refrigeration. Plenum, New York (1964)

    Book  Google Scholar 

  4. Heikes, R.R., Ure Jr., R.W. (eds.) A.A. (rev.).: Thermoelectricity: science and engineering. Am. J. Phys. 30, 78 (1962)

    Google Scholar 

  5. Ioffe, A.F.: The revival of thermoelectricity. Sci. Am. 199, 31–37 (1958)

    Article  Google Scholar 

  6. Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited, London (1957)

    Google Scholar 

  7. Thomson, W.: Thermoelectric currents. In: Mathematical and Physical Papers-I, pp. 232–291. Cambridge University Press, Cambridge (1882)

    Google Scholar 

  8. Wiśniewski, S., Staniszewski, B., Szymanik, R.: Thermodynamics of Nonequilibrium Processes (trans: Lepa, E.), pp. 128–180. D. Reidel, Boston (1976)

    Google Scholar 

  9. Gupta, V.K., Gauri, S., Sarat, B., Sharma, N.K.: Experiment to verify the second law of thermodynamics using a thermoelectric device. Am. J. Phys. 52, 625–628 (1984)

    Article  Google Scholar 

  10. Yan, Z., Chen, J.: Comment on “Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration”. Am. J. Phys. 61, 380 (1993)

    Article  Google Scholar 

  11. Gordon, J.M.: Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration. Am. J. Phys. 59, 551–555 (1991)

    Article  Google Scholar 

  12. Gordon, J.M.: A response to Yan and Chen’s “Comment on ‘Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration’”. Am. J. Phys. 61, 381 (1993)

    Article  Google Scholar 

  13. Luke, W.H.: Reply to experiment in thermoelectricity. Am. J. Phys. 28, 563 (1960)

    Article  Google Scholar 

  14. Noon, J.H., O’Brien, B.J.: Sophomore experiment in thermoelectricity. Am. J. Phys. 26, 373–375 (1958)

    Article  Google Scholar 

  15. Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time. Phys. Today 37, 62–70 (1984)

    Article  Google Scholar 

  16. Chen, J.: The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 27, 1144–1149 (1994)

    Article  Google Scholar 

  17. Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)

    Article  Google Scholar 

  18. De Mey, G., De Vos, A.: On the optimum efficiency of endoreversible thermodynamic processes. J. Phys. D Appl. Phys. 27, 736–739 (1994)

    Article  Google Scholar 

  19. De Vos, A.: Reflections on the power delivered by endoreversible engines. J. Phys. D Appl. Phys. 20, 232–236 (1987)

    Article  Google Scholar 

  20. Gordon, J.M.: Maximum power point characteristics of heat engines as a general thermodynamic problem. Am. J. Phys. 57, 1136–1142 (1989)

    Article  Google Scholar 

  21. Yan, Z., Chen, L.: The fundamental optimal relation and the bounds of power output and efficiency for an endoreversible Carnot engine. J. Phys. A Math. Gen. 28, 6167–6175 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Månsson, B.Å.: Thermodynamics and economics. In: Sieniutycz, S., Salamon, P. (eds.) Finite-Time Thermodynamics and Thermoeconomics. Taylor & Francis, New York (1991)

    Google Scholar 

  23. Rubin, M.H.: Optimal configuration of a class of irreversible heat engines-I. Phys. Rev. A 19, 1272–1276 (1977)

    Article  Google Scholar 

  24. Bejan, A., Paynter, H.M.: Solved Problems in Thermodynamics. Problem VIID. MIT, Cambridge (1976)

    Google Scholar 

  25. El-Wakil, M.M.: Nuclear Power Engineering, pp. 162–165. McGraw-Hill, New York (1962)

    Google Scholar 

  26. Lu, P.C.: On optimal disposal of waste heat. Energy 5, 993–998 (1980)

    Article  Google Scholar 

  27. Novikov, I.I.: The efficiency of atomic power stations. J. Nucl. Energy II 7, 125–128 (1958)

    Google Scholar 

  28. Bejan, A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Sherman, B., Heikes, R.R., Ure Jr., R.W.: Calculation of efficiency of thermoelectric devices. J. Appl. Phys. 31, 1–16 (1960)

    Article  Google Scholar 

  30. De Vos, A., Desoete, B.: Equipartition principle in finite-time thermodynamics. J. Non-Equilib. Thermodyn. 25, 1–13 (2000)

    Article  MATH  Google Scholar 

  31. Pramanick, A.K., Das, P.K.: Constructal design of a thermoelectric device. Int. J. Heat Mass Transf. 49, 1420–1429 (2006)

    Article  MATH  Google Scholar 

  32. Pramanick, A.K.: Equipartition of Joulean heat in thermoelectric generators. In: Rocha, L.A.O., Lorente, S., Bejan, A. (eds.) Constructal Law and the Unifying Principle of Design. Springer, New York (2013)

    Google Scholar 

  33. Boerdijk, A.H.: Contribution to a general theory of thermocouples. J. Appl. Phys. 30, 1080–1083 (1959)

    Article  MATH  Google Scholar 

  34. Harman, T.C., Honig, J.M.: Thermoelectric and Thermomagnetic Effects and Applications, p. 276. McGraw-Hill, New York (1967)

    Google Scholar 

  35. De Groot, S.R.: Thermodynamics of Irreversible Processes, pp. 141–162. Wiley-Interscience, New York (1952)

    Google Scholar 

  36. Bejan, A.: Entropy Generation Through Heat and Fluid Flow, pp. 173–187. Wiley, New York (1982)

    Google Scholar 

  37. Kadanoff, L.P.: Fractals: where’s the physics? Phys. Today 39, 6–7 (1986)

    Article  Google Scholar 

  38. McMahon, T.A., Kronauer, R.E.: Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976)

    Article  Google Scholar 

  39. Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. I. Theoretical. Proc. R. Soc. Lond. A 222, 167–180 (1954)

    Google Scholar 

  40. Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. II. Theoretical. Proc. R. Soc. Lond. A 225, 1–7 (1954)

    Google Scholar 

  41. Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. III. Experimental. Proc. R. Soc. Lond. A 225, 7–18 (1954)

    Google Scholar 

  42. Jain, S.C., Krishnan, K.S.: The distribution of temperature along a thin rod electrically heated in vacuo. IV. Many useful formulae verified. Proc. R. Soc. Lond. A 225, 19–32 (1954)

    Google Scholar 

  43. Salamon, P., Nitzan, A.: Finite time optimizations of a Newton’s law Carnot cycle. J. Chem. Phys. 74, 3546–3560 (1981)

    Article  MathSciNet  Google Scholar 

  44. Rektorys, K. (ed.): Survey of Applicable Mathematics, pp. 70–75. Liffe Books, London (1969)

    Google Scholar 

  45. Min, G., Rowe, D.M.: Thermoelectric figure-of-merit barrier at minimum lattice thermal conductivity? Appl. Phys. Lett. 77, 860–862 (2000)

    Article  Google Scholar 

  46. Ait-Ali, M.: Maximum power and thermal efficiency of an irreversible power cycle. J. Appl. Phys. 78, 4313–4318 (1995)

    Article  Google Scholar 

  47. Bejan, A.: Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transf. 38, 433–444 (1995)

    Article  Google Scholar 

  48. Klein, S.A.: Design considerations for refrigeration cycles. Int. J. Refrg. 15, 181–185 (1992)

    Article  Google Scholar 

  49. Antar, M.A., Zubair, S.M.: Thermoeconomic considerations in the optimum allocation of heat exchanger inventory for a power plant. Energ. Convers. Manage. 42, 1169–1179 (2001)

    Article  Google Scholar 

  50. Andresen, B.: Comment on “A fallacious argument in the finite time thermodynamic concept of endoreversibility”. J. Appl. Phys. 90, 6557–6559 (2001)

    Article  Google Scholar 

  51. Sekulic, D.P.: A fallacious argument in the finite time thermodynamics concept of endoreversibility. J. Appl. Phys. 83, 4561–4565 (1998)

    Article  Google Scholar 

  52. Sekulic, D.P.: Response to “Comment on ‘A fallacious argument in the finite time thermodynamics concept of endoreversibility’”. J. Appl. Phys. 90, 6560–6561 (2001)

    Article  Google Scholar 

  53. Andresen, B., Salamon, P., Berry, R.S.: Thermodynamics in finite time: extremals for imperfect heat engines. J. Chem. Phys. 66, 1571–1577 (1977)

    Article  Google Scholar 

  54. Logan, J.K., Clement, J.R., Jeffers, H.R.: Resistance minimum of magnesium: heat capacity between 3°K and 13°K. Phys. Rev. 105, 1435–1437 (1957)

    Article  Google Scholar 

  55. Pramanick, A.K., Das, P.K.: Note on constructal theory of organization in nature. Int. J. Heat Mass Transf. 48, 1974–1981 (2005)

    Article  MATH  Google Scholar 

  56. Gray, A.: Tubes. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  57. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Elsevier, London (1992)

    MATH  Google Scholar 

  58. Bern, M.W., Graham, R.L.: The shortest network problem. Sci. Am. 260, 84–89 (1989)

    Article  Google Scholar 

  59. Rubinstein, J.H., Thomas, D.A.: A variational approach to the Steiner network problem. Ann. Oper. Res. 33, 481–499 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  60. Ivanov, A.O., Tuzhilin, A.A.: Branching Solutions to One-Dimensional Variational Problems. World Scientific, Philadelphia (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Kumar Pramanick .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pramanick, A.K. (2014). Natural Heat Engine. In: The Nature of Motive Force. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54471-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54471-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54470-5

  • Online ISBN: 978-3-642-54471-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics