Skip to main content

Production of Lactic Acid from Sugars by Homogeneous and Heterogeneous Catalysts

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Lactic acid (2-hydroxypropionic acid, CH3CHOHCOOH) is one of the platform chemicals derived from biomass. It is used in the food industry and in the manufacture of biodegradable plastics and useful chemicals. Recently, various examinations were carried out not only by fermentation but also by the chemical methods using heterogeneous and homogenous catalysts. This chapter focuses on the chemical processes with heterogeneous catalysts in lactic acid and lactate ester productions from sugars. Brønsted basic catalysts and Lewis acid catalysts gave lactic acid in high yields. In the lactic acid productions from triose, lactic acid ester is obtained with high yields of nearly 100 % in alcohols around 100 °C using Sn-β zeolite, Sn–carbon–silica, and H-USY catalysts. In the lactic acid production from hexose, lactic acid ester or a lactate salts was obtained from glucose, fructose, and sucrose with the comparatively high selectivity of about 50 % by several catalytic processes, that were in water around 50 °C using heterogeneous basic catalysts, such as activated hydrotalcite catalyst, in hydrothermal water around 300 °C using homogeneous basic catalysts, such as NaOH and ZnSO4, and in alcohols around 160 °C using heterogeneous Lewis acid catalysts, such as Sn-β zeolite.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  Google Scholar 

  2. Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405

    Article  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  Google Scholar 

  4. Conn EE, Stumpf PK, Bruening G (1987) Doi RH Outlines of biochemistry, 5th edn. Wiley, New York

    Google Scholar 

  5. Oshiro M, Hanada K, Tashiro Y, Sonomoto K (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87:1177–1185

    Article  Google Scholar 

  6. Tashiro Y, Kaneko W, Sun Y, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp lactis QU 4. Appl Microbiol Biotechnol 89:1741–1750

    Article  Google Scholar 

  7. Abadel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Article  Google Scholar 

  8. Adnan AFM, Tan IKP (2007) Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential. Bioresour Technol 98:1380–1385

    Article  Google Scholar 

  9. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  Google Scholar 

  10. Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  Google Scholar 

  11. Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of l-lactic acid from xylose by Pichia stipites. Appl Environ Microbiol 73:117–123

    Article  Google Scholar 

  12. Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Production of organic acids by solid state fermentation. In: solid state fermentation in biotechnology: fundamentals and applications, Asiatech Publishers, New Delhi

    Google Scholar 

  13. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94

    Article  Google Scholar 

  14. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107

    Article  Google Scholar 

  15. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) d-(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    Article  Google Scholar 

  16. Onda A, Ochi T, Yanagisawa K (2008) Selective Hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  Google Scholar 

  17. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  Google Scholar 

  18. Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) d-Lactic acid production from cellooligosaccharides and β-glucan using genetically modified l-lactate dehydrogenase gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650

    Article  Google Scholar 

  19. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  Google Scholar 

  20. de Bruijn JM, Kieboom APG, van Bekkum H (1986) Alkaline degradation of monosaccharides III. Recl Trav Chim Pays-Bas 105:176–183

    Article  Google Scholar 

  21. Bicker M, Endres S, Vogel LO (2005) Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J Mol Catal A: Chem 239:151–157

    Article  Google Scholar 

  22. Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H (2004) Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid–base catalytic effect of subcritical water. Chem Lett 33:126–127

    Article  Google Scholar 

  23. de Bruijn JM, Kieboom APG, van Bekkum H (1987) Alkaline degradation of monosaccharides Part VII. A mechanistic picture. Starch/Staerke 39(1):23–28

    Article  Google Scholar 

  24. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4:382–397

    Article  Google Scholar 

  25. Yan X, Jin F, Tohji K, Moriya T, Enomoto H (2007) Production of lactic acid from glucose by alkaline hydrothermal reaction. J Mater Sci 42:9995–9999

    Article  Google Scholar 

  26. Yan X, Jin F, Tohji K, Kishita A, Enomoto H (2010) Hydrothermal conversion of carbohydrate biomass to lactic acid. AIChE J 56:2727–2733

    Article  Google Scholar 

  27. de Bruijn JM, Kieboom APG, van Bekkum H, van der Poel PW (1986) Reactions of monosaccharides in aqueous alkaline solutions. Sugar Technol Rev 13:21–52

    Google Scholar 

  28. Yang BY, Montgomery (1996) Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydr Res 280: 27–45

    Google Scholar 

  29. Theander O (1988) Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomass. Adv Carbohydr Chem Biochem 46:273–326

    Article  Google Scholar 

  30. Ellis AV, Wilson MA (2002) Carbon exchange in hot alkaline degradation of glucose. J Org Chem 67:8469–8474

    Article  Google Scholar 

  31. Rao KK, Gravelle M, Valente JS, Figueras F (1998) Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions. J Catal 173:115–121

    Article  Google Scholar 

  32. Climent MJ, Corma A, Iborra S, Velty A (2004) Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J Catal 221:474–482

    Article  Google Scholar 

  33. Roelofs JCAA, Lensveld DJ, van Dillen AJ, de Jong KP (2001) On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation. J Catal 203:184–191

    Article  Google Scholar 

  34. Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catal Comm 9:1050–1053

    Article  Google Scholar 

  35. Miyata S (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner 28:50–56

    Article  Google Scholar 

  36. Suzuki E, Ono Y (1988) Aldol condensation reaction between formaldehyde and acetone over heat-treated synthetic hydrotalcite and hydrotalcite-like compounds. Bull Chem Soc Jpn 61:1008–1010

    Article  Google Scholar 

  37. Pesic L, Salipurovic S, Markovic V, Vucelic D, Kagunya W, Jones W (1992) Thermal characteristics of a synthetic hydrotalcite-like material. J Mater Chem 2:1069–1073

    Article  Google Scholar 

  38. Prescott HA, Li ZJ, Kemnitz E, Trunschke A, Deutsch J, Lieske H, Auroux A (2005) Application of calcined Mg–Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid–base properties. J Catal 234:119–130

    Article  Google Scholar 

  39. Winter F, Xia X, Hereijgers BPC, Bitter JH, van Dillen AJ, Muhler M, de Jong KP (2006) On the nature and accessibility of the Brønsted-base sites in activated hydrotalcite catalysts. J Phys Chem B 110:9211–9218

    Article  Google Scholar 

  40. Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54

    Article  Google Scholar 

  41. de Wit G, de Vlieger JJ, Kock-van Dalen AC, Heus R, Laroy R, van Hengstum AJ, Kieboom APG, van Bekkum H (1981) Catalytic dehydrogenation of reducing sugars in alkaline solution. Carbohydr Res 91:125–138

    Google Scholar 

  42. Abbadi A, van Bekkum H (1995) Effect of pH in the Pt-catalyzed oxidation of d-glucose to d-gluconic acid. J Mol Catal A 97:111–118

    Article  Google Scholar 

  43. Besson M, Lahmer F, Gallezot P, Fuertes P, Flèche G (1995) Catalytic oxidation of glucose on Bismuth-promoted palladium catalysts. J Catal 152:116–121

    Article  Google Scholar 

  44. Wenkin M, Touillaux R, Ruiz P, Delmon B, Devillers M (1996) Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to gluconic acid. Appl Catal A 148:181–199

    Article  Google Scholar 

  45. Biella S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206:242–247

    Article  Google Scholar 

  46. Mirescu A, Prüße U (2006) Selective glucose oxidation on gold colloids. Catal Comm 7:11–17

    Article  Google Scholar 

  47. Raharja S, Rigal L, Gaset A, Barre L, Chornet E, Videl, PF (1994) Biomass for energy, environment, agriculture and industry. Proceeding of the eighth European biomass conference vol 2. pp 1420–1427

    Google Scholar 

  48. Raharja S, Rigal L, Videl PF (1997) Alkaline oxidation of sugar: thermochemical conversion of xylose from hemicellulose into lactic acid. Dev thermochem biomass convers 1:773–782

    Article  Google Scholar 

  49. Mirescu A, Prüße U (2007) A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl Catal B 70:644–652

    Google Scholar 

  50. Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Glyoxylase biomimics: zeolite catalyzed conversion of trioses. Stud Surf Sci Catal 170:1222–1227

    Article  Google Scholar 

  51. Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Comm 21: 2716–2718

    Google Scholar 

  52. West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130

    Article  Google Scholar 

  53. Rasrendra CB, Fachri BA, Makertihartha IBGN, Adisasmito S, Heeres HJ (2011) Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem 4:768–777

    Google Scholar 

  54. Taarning E, Saravanamurugan S, Spangsberg HM, Xiong J, West RM, Christensen CH (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627

    Article  Google Scholar 

  55. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442

    Article  Google Scholar 

  56. Pescarmona PP, Janssen KPF, Stroobants C, Molle B, Paul JS, Jacobs PA, Sels BF (2010) A high-throughput experimentation study of the synthesis of lactates with solid acid catalysts. Top Catal 53:77–85

    Article  Google Scholar 

  57. Li L, Stroobants C, Lin K, Jacobs KA, Sels BF, Pescarmona PP (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181

    Article  Google Scholar 

  58. Wang J, Masui Y, Onaka M (2011) Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Brønsted acid tin ion-exchanged montmorillonite. Appl Catal B 107:135–139

    Article  Google Scholar 

  59. de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J Am Chem Soc 134:10089–10101

    Article  Google Scholar 

  60. Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605

    Article  Google Scholar 

  61. Rivalier P, Duhamet J, Moreau C, Durand R (1995) Development of a continuous catalytic heterogeneous column reactor with simultaneous extraction of an intermediate product by an organic solvent circulating in countercurrent manner with the aqueous phase. Catal Today 24:165–171

    Article  Google Scholar 

  62. Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580

    Article  Google Scholar 

  63. dos Santos JB, da Silva FL, Altino FMRS, da Silva Moreira T, Meneghetti MR, Meneghetti SMP (2013) Cellulose conversion in the presence of catalysts based on Sn(IV). Catal Sci Technol 3:673–678

    Google Scholar 

  64. Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl Catal B 105:171–181

    Article  Google Scholar 

  65. Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X (2011) Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts. Catal Comm 15:82–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumu Onda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Onda, A. (2014). Production of Lactic Acid from Sugars by Homogeneous and Heterogeneous Catalysts. In: Jin, F. (eds) Application of Hydrothermal Reactions to Biomass Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54458-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54458-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54457-6

  • Online ISBN: 978-3-642-54458-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics