Advertisement

Organic Waste Gasification in Near- and Super-Critical Water

  • Liejin Guo
  • Yunan Chen
  • Jiarong Yin
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

The treatment and utilization of organic wastes is important. The governments have invested huge funds and made great efforts on the research. Among the various options, the near- and supercritical water gasification (NSCWG) is a most promising method. The main advantage is that organic wastes, containing a high water content of 80 wt% or more, could be converted to other substances without drying. This chapter reviews the current status of NSCWG of organic wastes. The reaction systems are introduced first. Then, the theoretical values of gas yields are predicted by thermodynamics analysis and the experimental results without catalysts are investigated extensively. In order to better understand and improve the reactions, the reaction processes, the application of catalysts, and the analysis of kinetics are also discussed.

Keywords

Sewage Sludge Batch Reactor Organic Waste Liquid Product Supercritical Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

GE:

Gasification efficiency, the mass of product gas/the mass of feedstock, %

CE:

Carbon gasification efficiency, carbon in product gas/carbon in feedstock, %

CODr:

COD removal efficiency, 1-COD of aqueous residue/COD of feedstock, %

ER:

Oxidant equivalent ratio, amount of oxidant added/the required amount for complete oxidation by stoichiometry calculation, %

Notes

Acknowledgements

This work was financially supported by the National Key Basic Research Program 973 Project funded by MOST of China (Project No.2009CB220000 and 2012CB215303), the National Natural Science Foundation of China (Project No. 51121092) and the engineering technology research center of renewable energy in Shaanxi (Project No. 2008ZDGC-07).

References

  1. 1.
    Basu P, Mettanant V (2009) Biomass gasification in supercritical water—a review. Int J Chem React Eng 7(1). doi: 10.2202/1542-6580.1919
  2. 2.
    Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99(2):603–621MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kruse A (2008) Supercritical water gasification. Biofuel Bioprod Biorefin 2(5):415–437. doi: 10.1002/Bbb.93 CrossRefGoogle Scholar
  4. 4.
    Kruse A, Gawlik A (2003) Biomass conversion in water at 330–410 degrees C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42(2):267–279. doi: 10.1021/Ie0202773 CrossRefGoogle Scholar
  5. 5.
    Kruse A, Henningsen T, Sinag A, Pfeiffer J (2003) Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols. Ind Eng Chem Res 42(16):3711–3717. doi: 10.1021/ie0209430 CrossRefGoogle Scholar
  6. 6.
    Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39(11):4040–4053. doi: 10.1021/ie0003436 CrossRefGoogle Scholar
  7. 7.
    Elliott DC (2008) Catalytic hydrothermal gasification of biomass. Biofuel Bioprod Biorefin 2(3):254–265. doi: 10.1002/Bbb.74 CrossRefGoogle Scholar
  8. 8.
    Yoshida T, Matsumura Y (2001) Gasification of cellulose, xylan, and lignin mixtures in supercritical water. Ind Eng Chem Res 40(23):5469–5474CrossRefGoogle Scholar
  9. 9.
    Guo S, Guo L, Cao C, Yin J, Lu Y, Zhang X (2012) Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int J Hydrog Energy 37(7):5559–5568CrossRefGoogle Scholar
  10. 10.
    Guo LJ, Lu YJ, Zhang XM, Ji CM, Guan Y, Pei AX (2007) Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today 129(3–4):275–286. doi: 10.1016/j.cattod.2007.05.027 CrossRefGoogle Scholar
  11. 11.
    Savage PE, Resende FLP, Fraley SA, Berger MJ (2008) Noncatalytic gasification of lignin in supercritical water. Energy Fuel 22(2):1328–1334. doi: 10.1021/ef700574k CrossRefGoogle Scholar
  12. 12.
    Savage PE, Resende FLP, Neff ME (2007) Noncatalytic gasification of cellulose in supercritical water. Energy Fuel 21(6):3637–3643. doi: 10.1021/ef7002206 CrossRefGoogle Scholar
  13. 13.
    Kersten SRA, Potic B, Prins W, Van Swaaij WPM (2006) Gasification of model compounds and wood in hot compressed water. Ind Eng Chem Res 45(12):4169–4177. doi: 10.1021/Ie0509490 CrossRefGoogle Scholar
  14. 14.
    Elliott DC, Sealock LJ Jr, Baker EG (1994) Chemical processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction. Ind Eng Chem Res 33(3):558–565. doi: 10.1021/ie00027a012
  15. 15.
    Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13(1–3):253–259CrossRefGoogle Scholar
  16. 16.
    Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M (2000) Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluid 17(2):145–153CrossRefGoogle Scholar
  17. 17.
    Potic B, Kersten SRA, Prins W, van Swaaij WPM (2004) A high-throughput screening technique for conversion in hot compressed water. Ind Eng Chem Res 43(16):4580–4584. doi: 10.1021/ie030732a CrossRefGoogle Scholar
  18. 18.
    Williams PT, Onwudili J (2005) Composition of products from the supercritical water gasification of glucose: a model biomass compound. Ind Eng Chem Res 44(23):8739–8749. doi: 10.1021/Ie050733y CrossRefGoogle Scholar
  19. 19.
    Hao XH, Guo LJ, Zhang XM, Guan Y (2005) Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110(1–3):57–65. doi: 10.1016/j.cej.2005.05.002 CrossRefGoogle Scholar
  20. 20.
    Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrog Energy 28(1):55–64CrossRefGoogle Scholar
  21. 21.
    Sinag A, Kruse A, Rathert J (2004) Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res 43(2):502–508. doi: 10.1021/Ie030475+ CrossRefGoogle Scholar
  22. 22.
    Guo LJ, Li YL, Zhang XM, Jin H, Lu YJ (2010) Hydrogen production from coal gasification in supercritical water with a continuous flowing system. Int J Hydrog Energy 35(7):3036–3045. doi: 10.1016/j.ijhydene.2009.07.023 CrossRefGoogle Scholar
  23. 23.
    Lu YJ, Jin H, Guo LJ, Zhang XM, Cao CQ, Guo X (2008) Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor. Int J Hydrog Energy 33(21):6066–6075. doi: 10.1016/j.ijhydene.2008.07.082 CrossRefGoogle Scholar
  24. 24.
    Lu YJ, Guo LJ, Zhang XM, Yan QH (2007) Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem Eng J 131(1–3):233–244. doi: 10.1016/j.cej.2006.11.016 CrossRefGoogle Scholar
  25. 25.
    Feng W, van der Kooi HJ, Arons JDS (2004) Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Process 43(12):1459–1467. doi: 10.1016/j.cep.2004.01.004 CrossRefGoogle Scholar
  26. 26.
    Tang HQ, Kitagawa K (2005) Supercritical water gasification of biomass: thermodynamic analysis with direct Gibbs free energy minimization. Chem Eng J 106(3):261–267. doi: 10.1016/j.cej.2004.12.021 CrossRefGoogle Scholar
  27. 27.
    Yan QH, Guo LJ, Lu YJ (2006) Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers Manag 47(11–12):1515–1528. doi: 10.1016/j.enconman.2005.08.004 CrossRefGoogle Scholar
  28. 28.
    Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Convers Manag 46(4):615–631. doi: 10.1016/j.enconman.2004.04.003 CrossRefGoogle Scholar
  29. 29.
    Matsumura Y, Minowa T (2004) Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed. Int J Hydrog Energy 29(7):701–707. doi: 10.1016/j.ijhydene.2003.09.005 CrossRefGoogle Scholar
  30. 30.
    Voll FAP, Rossi CCRS, Silva C, Guirardello R, Souza ROMA, Cabral VF, Cardozo L (2009) Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int J Hydrog Energy 34(24):9737–9744. doi: 10.1016/j.ijhydene.2009.10.017 CrossRefGoogle Scholar
  31. 31.
    Castello D, Fiori L (2011) Supercritical water gasification of biomass: thermodynamic constraints. Bioresour Technol 102(16):7574–7582. doi:http://dx.doi.org/10.1016/j.biortech.2011.05.017 Google Scholar
  32. 32.
    Marias F, Letellier S, Cezac P, Serin JP (2011) Energetic analysis of gasification of aqueous biomass in supercritical water. Biomass Bioenerg 35(1):59–73. doi: 10.1016/j.biombioe.2010.08.030 CrossRefGoogle Scholar
  33. 33.
    Jarana MBG, Saanchez-Oneto J, Portela JR, Sanz EN, de la Ossa EJM (2008) Supercritical water gasification of industrial organic wastes. J Supercrit Fluid 46(3):329–334. doi: 10.1016/j.supflu.2008.03.002 CrossRefGoogle Scholar
  34. 34.
    Nakhla G, Youssef EA, Elbeshbishy E, Hafez H, Charpentier P (2010) Sequential supercritical water gasification and partial oxidation of hog manure. Int J Hydrog Energy 35(21):11756–11767. doi: 10.1016/j.ijhydene.2010.08.097 CrossRefGoogle Scholar
  35. 35.
    Onwudili JA, Williams PT (2010) Hydrothermal reforming of bio-diesel plant waste: products distribution and characterization. Fuel 89(2):501–509. doi: 10.1016/j.fuel.2009.06.033 CrossRefGoogle Scholar
  36. 36.
    Yanik J, Ebale S, Kruse A, Saglam M, Yuksel M (2008) Biomass gasification in supercritical water: II. Effect of catalyst. Int J Hydrogen Energ 33(17):4520–4526. doi: 10.1016/j.ijhydene.2008.06.024 CrossRefGoogle Scholar
  37. 37.
    Yamamura T, Mori T, Park KC, Fujii Y, Tomiyasu H (2009) Ruthenium(IV) dioxide-catalyzed reductive gasification of intractable biomass including cellulose, heterocyclic compounds, and sludge in supercritical water. J Supercrit Fluid 51(1):43–49. doi: 10.1016/j.supflu.2009.07.007 CrossRefGoogle Scholar
  38. 38.
    Zhang LH, Xu CB, Champagne P (2010) Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour Technol 101(8):2713–2721. doi: 10.1016/j.biortech.2009.11.106 CrossRefGoogle Scholar
  39. 39.
    Afif E, Azadi P, Farnood R (2011) Catalytic hydrothermal gasification of activated sludge. Appl Catal B-Environ 105(1–2):136–143. doi: 10.1016/j.apcatb.2011.04.003 CrossRefGoogle Scholar
  40. 40.
    Vostrikov AA, Fedyaeva ON, Shishkin AV, Dubov DY, Sokol MY (2008) Conversion of municipal sewage sludge in supercritical water. Solid Fuel Chem 42(6):384–393. doi: 10.3103/S0361521908060116 CrossRefGoogle Scholar
  41. 41.
    Xu XD, Matsumura Y, Stenberg J, Antal MJ (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res 35(8):2522–2530CrossRefGoogle Scholar
  42. 42.
    Xu XD, Antal MJ (1998) Gasification of sewage sludge and other biomass for hydrogen production in supercritical water. Environ Prog 17(4):215–220CrossRefGoogle Scholar
  43. 43.
    Guo Y, Wang SZ, Gong YM, Xu DH, Tang XY, Ma HH (2010) Partial oxidation of municipal sludge with activated carbon catalyst in supercritical water. J Hazard Mater 180(1–3):137–144. doi: 10.1016/j.jhazmat.2010.04.005 CrossRefGoogle Scholar
  44. 44.
    Chen Y, Guo L, Cao W, Jin H, Guo S, Zhang X Hydrogen production by sewage sludge gasification in supercritical water with a fluidized bed reactor. Int J Hydrog Energy (0). doi:http://dx.doi.org/10.1016/j.ijhydene.2013.03.165
  45. 45.
    Sricharoenchaikul V (2009) Assessment of black liquor gasification in supercritical water. Bioresour Technol 100(2):638–643. doi: 10.1016/j.biortech.2008.07.011 CrossRefGoogle Scholar
  46. 46.
    Cao CQ, Guo LJ, Chen YA, Guo SM, Lu YJ (2011) Hydrogen production from supercritical water gasification of alkaline wheat straw pulping black liquor in continuous flow system. Int J Hydrog Energy 36(21):13528–13535. doi: 10.1016/j.ijhydene.2011.07.101 CrossRefGoogle Scholar
  47. 47.
    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102(8):2725–2750. doi: 10.1021/cr000668w CrossRefGoogle Scholar
  48. 48.
    Lu YJ, Guo LJ, Ji CM, Zhang XM, Hao XH, Yan QH (2006) Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrog Energy 31(7):822–831. doi: 10.1016/j.ijhydene.2005.08.011 CrossRefGoogle Scholar
  49. 49.
    Chuntanapum A, Yong TLK, Miyake S, Matsumura Y (2008) Behavior of 5-HMF in subcritical and supercritical water. Ind Eng Chem Res 47(9):2956–2962. doi: 10.1021/Ie0715658 CrossRefGoogle Scholar
  50. 50.
    Youssef EA, Elbeshbishy E, Hafez H, Nakhla G, Charpentier P (2010) Sequential supercritical water gasification and partial oxidation of hog manure. Int J Hydrog Energy 35(21):11756–11767. doi: 10.1016/j.ijhydene.2010.08.097 CrossRefGoogle Scholar
  51. 51.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind Eng Chem Res 36(5):1552–1558CrossRefGoogle Scholar
  52. 52.
    Kruse A, Sinag A, Schwarzkopf V (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42(15):3516–3521. doi: 10.1021/ie030079r CrossRefGoogle Scholar
  53. 53.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluid 13(1–3):261–268CrossRefGoogle Scholar
  54. 54.
    Saisu M, Sato T, Watanabe M, Adschiri T, Arai K (2003) Conversion of lignin with supercritical water−phenol mixtures. Energy Fuel 17(4):922–928. doi: 10.1021/ef0202844 CrossRefGoogle Scholar
  55. 55.
    Okuda K, Umetsu M, Takami S, Adschiri T (2004) Disassembly of lignin and chemical recovery - rapid depolymerization of lignin without char formation in water-phenol mixtures. Fuel Process Technol 85(8–10):803–813. doi: 10.1016/j.fuproc.2003.11.027 CrossRefGoogle Scholar
  56. 56.
    Okuda K, Umetsu M, Takami S, Adschiri T (2004) Disassembly of lignin and chemical recovery—rapid depolymerization of lignin without char formation in water–phenol mixtures. Fuel Process Technol 85(8–10):803–813. doi:http://dx.doi.org/10.1016/j.fuproc.2003.11.027 Google Scholar
  57. 57.
    Wahyudiono, Sasaki M, Goto M (2008) Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem Eng Process: Process Intensif 47(9–10):1609–1619. doi:http://dx.doi.org/10.1016/j.cep.2007.09.001
  58. 58.
    Carrier M, Loppinet-Serani A, Absalon C, Aymonier C, Mench M (2012) Degradation pathways of holocellulose, lignin and α-cellulose from Pteris vittata fronds in sub- and super critical conditions. Biomass Bioenerg 43(0):65–71. doi:http://dx.doi.org/10.1016/j.biombioe.2012.03.035
  59. 59.
    Fang Z, Minowa T, Smith RL, Ogi T, Kozinski JA (2004) Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350 degrees C. Ind Eng Chem Res 43(10):2454–2463. doi: 10.1021/Ie034146t CrossRefGoogle Scholar
  60. 60.
    Fang Z, Minowa T, Fang C, Smith RL, Inomata H, Kozinski JA (2008) Catalytic hydrothermal gasification of cellulose and glucose. Int J Hydrog Energy 33(3):981–990. doi: 10.1016/j.ijhydene.2007.11.023 CrossRefGoogle Scholar
  61. 61.
    Ogihara Y, Smith RL, Inomata H, Arai K (2005) Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550–1000 kg/m(3)). Cellulose 12(6):595–606. doi: 10.1007/s10570-005-9008-1 CrossRefGoogle Scholar
  62. 62.
    Fang Z, Sato T, Smith RL, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol 99(9):3424–3430. doi: 10.1016/j.biortech.2007.08.008 CrossRefGoogle Scholar
  63. 63.
    Bocanegra PE, Reverte C, Aymonier C, Loppinet-Serani A, Barsan MM, Butler IS, Kozinski JA, Gokalp I (2010) Gasification study of winery waste using a hydrothermal diamond anvil cell. J Supercrit Fluid 53(1–3):72–81. doi: 10.1016/j.supflu.2010.02.015 CrossRefGoogle Scholar
  64. 64.
    Yong TL-K, Matsumura Y (2012) Reaction kinetics of the lignin conversion in supercritical water. Ind Eng Chem Res 51(37):11975–11988. doi: 10.1021/ie300921d CrossRefGoogle Scholar
  65. 65.
    Wahyudiono Sasaki M, Goto M (2008) Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem Eng Process 47(9–10):1609–1619. doi: 10.1016/j.cep.2007.09.001 CrossRefGoogle Scholar
  66. 66.
    Osada M, Sato T, Watanabe M, Shirai M, Arai K (2006) Catalytic gasification of wood biomass in subcritical and supercritical water. Combust Sci Technol 178(1–3):537–552. doi: 10.1080/00102200500290807 CrossRefGoogle Scholar
  67. 67.
    Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sustain Energy Rev 14(1):334–343. doi: 10.1016/j.rser.2009.08.012 CrossRefGoogle Scholar
  68. 68.
    Kruse A, Meier D, Rimbrecht P, Schacht M (2000) Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39(12):4842–4848. doi: 10.1021/Ie0001570 CrossRefGoogle Scholar
  69. 69.
    Azadi P, Khodadadi AA, Mortazavi Y, Farnood R (2009) Hydrothermal gasification of glucose using Raney nickel and homogeneous organometallic catalysts. Fuel Process Technol 90(1):145–151. doi: 10.1016/j.fuproc.2008.08.009 CrossRefGoogle Scholar
  70. 70.
    Elliott DC, Sealock LJ, Baker EG (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548. doi: 10.1021/ie00020a002 CrossRefGoogle Scholar
  71. 71.
    Minowa T, Inoue S (1999) Hydrogen production from biomass by catalytic gasification in hot compressed water. Renew Energy 16(1–4):1114–1117 http://dx.doi.org/10.1016/S0960-1481(98)00436-4 Google Scholar
  72. 72.
    Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M (2009) Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal Today 146(1–2):192–195. doi: 10.1016/j.cattod.2008.11.008 CrossRefGoogle Scholar
  73. 73.
    Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18(2):327–333. doi: 10.1021/Ef034026y CrossRefGoogle Scholar
  74. 74.
    Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300(5628):2075–2077. doi: 10.1126/science.1085597 CrossRefGoogle Scholar
  75. 75.
    Sato T, Furusawa T, Ishiyama Y, Sugito H, Miura Y, Sato M, Suzuki N, Itoh N (2006) Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water. Ind Eng Chem Res 45(2):615–622. doi: 10.1021/Ie0510270 CrossRefGoogle Scholar
  76. 76.
    DiLeo GJ, Savage PE (2006) Catalysis during methanol gasification in supercritical water. J Supercrit Fluid 39(2):228–232. doi: 10.1016/j.supflu.2006.01.004 CrossRefGoogle Scholar
  77. 77.
    Park KC, Tomiyasu H (2003) Gasification reaction of organic compounds catalyzed by RuO2 in supercritical water. Chem Commun 6:694–695. doi: 10.1039/b211800a CrossRefGoogle Scholar
  78. 78.
    Watanabe M, Inomata H, Arai K (2002) Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenerg 22(5):405–410. doi:Pii S0961-9534(02)00017-XGoogle Scholar
  79. 79.
    Liu YY, Wei H, Wu S, Guo Z (2012) Kinetic study of epoxy resin decomposition in near-critical water. Chem Eng Technol 35(4):713–719. doi: 10.1002/ceat.201100494 CrossRefGoogle Scholar
  80. 80.
    Alenezi R, Leeke GA, Santos RCD, Khan AR (2009) Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chemical Engineering Research and Design 87(6):867–873. doi:http://dx.doi.org/10.1016/j.cherd.2008.12.009
  81. 81.
    Lee IG, Kim MS, Ihm SK (2002) Gasification of glucose in supercritical water. Ind Eng Chem Res 41(5):1182–1188. doi: 10.1021/Ie010066i CrossRefGoogle Scholar
  82. 82.
    Guo S, Guo L, Yin J, Jin H (2013) Supercritical water gasification of glycerol: intermediates and KINETICS. J Supercrit Fluids 78(0):95–102. doi:http://dx.doi.org/10.1016/j.supflu.2013.03.025 Google Scholar
  83. 83.
    Huelsman CM, Savage PE (2012) Intermediates and kinetics for phenol gasification in supercritical water. Phys Chem Chem Phys 14(8):2900–2910CrossRefGoogle Scholar
  84. 84.
    Guan Q, Wei C, Savage PE (2012) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14(9):3140–3147CrossRefGoogle Scholar
  85. 85.
    Resende FLP, Savage PE (2010) Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin. AIChE J 56(9):2412–2420. doi: 10.1002/Aic.12165 Google Scholar
  86. 86.
    Di Blasi C, Branca C, Galgano A, Meier D, Brodzinski I, Malmros O (2007) Supercritical gasification of wastewater from updraft wood gasifiers. Biomass Bioenerg 31(11–12):802–811. doi: 10.1016/j.biombioe.2007.05-002 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF)Xi’an Jiaotong UniversityShaanxiChina

Personalised recommendations