Skip to main content

Creation of Unnatural Base Pair Systems Toward New DNA/RNA Biotechnologies

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The formation of A–T (U) and G–C base pairs is the fundamental rule of genetic information flow in the central dogma of living organisms on Earth. By the same token, the present genetic recombinant biotechnology relies on this base pair complementarity, but the use of only two types of base pairs restricts further technological advancement. Thus, the expansion of the genetic alphabet of DNA, using an artificial third base pair (unnatural base pair), has the potential to open the door to new biotechnologies. Polymerase reactions mediated by an unnatural base pair could site specifically incorporate extra functional components of interest within nucleic acids. To pursue this possibility, researchers have sought to create unnatural base pairs that function as a third base pair, along with the natural base pairs, in polymerase reactions. Recently, several unnatural base pairs with high efficiency and selectivity in in vitro replication and transcription have been created. Here, we describe the recent advancements in unnatural base pair development, focusing on our studies and applications to DNA aptamer selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37:784–797

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DE (2009) Unnatural nucleosides with unusual base pairing properties. Curr Protoc Nucleic Acid Chem Chapter 1:Unit 1.4

    PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Henry AA, Romesberg FE (2003) Beyond A, C, G and T: augmenting nature’s alphabet. Curr Opin Chem Biol 7:727–733

    Article  CAS  PubMed  Google Scholar 

  • Hirao I (2006a) Placing extra components into RNA by specific transcription using unnatural base pair systems. Biotechniques 40:711–715

    Article  CAS  PubMed  Google Scholar 

  • Hirao I (2006b) Unnatural base pair systems for DNA/RNA-based biotechnology. Curr Opin Chem Biol 10:622–627

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Kimoto M (2012) Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma. Proc Jpn Acad Ser B Phys Biol Sci 88:345–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirao I, Ohtsuki T, Fujiwara T et al (2002) An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 20:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Kimoto M, Mitsui T et al (2006) An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat Methods 3:729–735

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Mitsui T, Kimoto M et al (2007) An efficient unnatural base pair for PCR amplification. J Am Chem Soc 129:15549–15555

    Article  CAS  PubMed  Google Scholar 

  • Hirao I, Kimoto M, Yamashige R (2012) Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc Chem Res 45:2055–2065

    Article  CAS  PubMed  Google Scholar 

  • Horlacher J, Hottiger M, Podust VN et al (1995) Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns. Proc Natl Acad Sci U S A 92:6329–6333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimoto M, Endo M, Mitsui T et al (2004) Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem Biol 11:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kimoto M, Mitsui T, Harada Y et al (2007) Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res 35:5360–5369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimoto M, Kawai R, Mitsui T et al (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimoto M, Cox RS 3rd, Hirao I (2011) Unnatural base pair systems for sensing and diagnostic applications. Expert Rev Mol Diagn 11:321–331

    CAS  PubMed  Google Scholar 

  • Kimoto M, Yamashige R, Yokoyama S et al (2012) PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system. J Nucleic Acids 2012:230943

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimoto M, Hikida Y, Hirao I (2013a) Site-specific functional labeling of nucleic acids by in vitro replication and transcription using unnatural base pair systems. Isr J Chem 53:450–468

    Article  CAS  Google Scholar 

  • Kimoto M, Yamashige R, Matsunaga K et al (2013b) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  • Kool ET (2000) Synthetically modified DNAs as substrates for polymerases. Curr Opin Chem Biol 4:602–608

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Canny MD, De Erkenez A et al (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF(165). Proc Natl Acad Sci U S A 102:18902–18907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malyshev DA, Seo YJ, Ordoukhanian P et al (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131:14620–14621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malyshev DA, Dhami K, Quach HT et al (2012) Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc Natl Acad Sci U S A 109:12005–12010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morohashi N, Kimoto M, Sato A et al (2012) Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system. Molecules 17:2855–2876

    Article  CAS  PubMed  Google Scholar 

  • Piccirilli JA, Krauch T, Moroney SE et al (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33–37

    Article  CAS  PubMed  Google Scholar 

  • Rich A (1962) Problems of evolution and biochemical information transfer. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 103–126

    Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  PubMed  Google Scholar 

  • Ruckman J, Green LS, Beeson J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  • Seo YJ, Matsuda S, Romesberg FE (2009) Transcription of an expanded genetic alphabet. J Am Chem Soc 131:5046–5047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo YJ, Malyshev DA, Lavergne T et al (2011) Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J Am Chem Soc 133:19878–19888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Switzer C, Moroney SE, Benner SA (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111:8322–8323

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Yamashige R, Kimoto M, Takezawa Y et al (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40:2793–2806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Sismour AM, Sheng P et al (2007) Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res 35:4238–4249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Chen F, Alvarado JB et al (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133:15105–15112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hirao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimoto, M., Hirao, I. (2014). Creation of Unnatural Base Pair Systems Toward New DNA/RNA Biotechnologies. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_8

Download citation

Publish with us

Policies and ethics