Adam A, Moffat JG (1966) Dismutation reactions of nucloeside polyphosphates. V. Syntheses of P1, P4-di(guanosine-5′) tetraphosphate and P1, P3-di(guanosine-5′) triphosphate. J Am Chem Soc 88:838–842
CAS
PubMed
CrossRef
Google Scholar
Adams BL, Morgan M, Muthukrishnan S et al (1978) The effect of “cap” analogs on reovirus mRNA binding to wheat germ ribosomes. J Biol Chem 253:2589–2595
CAS
PubMed
Google Scholar
Banerjee H, Palenchar JB, Lukaszewicz M et al (2009) Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: Substrate specificity studies on the recombinant and endogenous proteins. RNA 15:1554–1564
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Belanger F, Stepinski J, Darzynkiewicz E et al (2010) Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J Biol Chem 285:33037–33044
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Benarroch D, Jankowska-Anyszka M, Stepinski J et al (2010) Cap analog reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities. RNA 16:211–220
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Blackburn GM, Guo M, McLennan AG (1992) Synthetic structural analogues of dinucleoside polyphosphates. In: McLennan AG (ed) Ap4A and other dinuleoside polyphosphates. CRC, Boca Raton, FL, pp 305–342
Google Scholar
Blagden SP, Willis AE (2011) The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 8:280–291
CAS
PubMed
CrossRef
Google Scholar
Boland A, Tritschler F, Heimstaedt S et al (2010) Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep 11:522–527
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Brownlee GG, Fodor E, Pritlove DC et al (1995) Solid phase synthesis of 5′-diphosphorylated oligoribonucleotides and their conversion to capped m7Gppp-oligoribonucleotides for use as primers for influenza A virus RNA polymerase in vitro. Nucleic Acids Res 23:2641–2647
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Burgess K, Cook D (2000) Syntheses of nucleoside triphosphates. Chem Rev 100:2047–2059
CAS
PubMed
CrossRef
Google Scholar
Cai A, Jankowska-Anyszka M, Centers A et al (1999) Quantitative assessment of mRNA cap analogues as inhibitors of in vitro translation. Biochemistry 38:8538–8547
CAS
PubMed
CrossRef
Google Scholar
Calero G, Wilson K, Ly T et al (2002) Structural basis of m7GpppG binding to the nuclear cap-binding complex. Nat Struct Biol 9:912–917
CAS
PubMed
CrossRef
Google Scholar
Canaani D, Revel M, Groner Y (1976) Translational discrimination of “capped” and “non-capped” mRNAs: Inhibition by a series of chemical analogs of m7GpppX. FEBS Lett 64:326–331
CAS
PubMed
CrossRef
Google Scholar
Chavan AJ, Rychlik W, Blaas D et al (1990) Phenyl azide substituted and benzophenone-substituted phosphonamides of 7-methylguanosine 5′-triphosphate as photoaffinity probes for protein-synthesis initiation factor eIF-4E and a proteolytic fragment containing the cap-binding site. Biochemistry 29:5521–5529
CAS
PubMed
CrossRef
Google Scholar
Chlebicka L, Wieczorek Z, Stolarski R et al (1995) Synthesis and properties of mRNA 5′-cap analogues with 7-methylguanine replaced by benzimidazole or 3-methylbenzimidazole. Nucleosides Nucleotides 14:771–775
CAS
CrossRef
Google Scholar
Cho PF, Poulin F, Cho-Park YA et al (2005) A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121:411–423
CAS
PubMed
CrossRef
Google Scholar
Cohen LS, Mikhli C, Friedman C et al (2004) Nematode m7GpppG – and m3
2,2,7GpppG – RNA decapping: Activities in Ascaris embryos and characterization of C. elegans scavenger DcpS. RNA 10:1609–1624
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Contreras R, Cheroutre H, Degrave W et al (1982) Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res 10:6353–6362
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Cramer F, Schaller H, Staab HA (1961) Zur Chemie der “Energiereichen Phosphate” XI. Darstellung von Imidazoliden der Phosphorsäure. Chem Ber 94:1612–1621
CAS
CrossRef
Google Scholar
Darzynkiewicz E, Antosiewicz J, Ekiel I et al (1981) Methyl esterification of m7Gp reversibly blocks its activity as an analog of eukaryotic mRNA 5′-caps. J Mol Biol 153:451–453
CAS
PubMed
CrossRef
Google Scholar
Darzynkiewicz E, Ekiel I, Tahara SM et al (1985) Chemical synthesis and characterization of 7-methylguanosine cap analogues. Biochemistry 24:1701–1707
CAS
CrossRef
Google Scholar
Darzynkiewicz E, Ekiel I, Lassota P et al (1987) Inhibition of eukaryotic translation by analogues of messenger RNA 5′-cap: chemical and biological consequences of 5′-phosphate modifications of 7-methylguanosine 5′-monophosphate. Biochemistry 26:4372–4380
CAS
PubMed
CrossRef
Google Scholar
Darzynkiewicz E, Stepinski J, Ekiel I et al (1988) ß-Globin mRNAs capped with m7G, m2
2,7G or m3
2,2,7G differ in intrinsic translation efficiency. Nucleic Acids Res 16:8953–8962
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Darzynkiewicz E, Stepinski J, Ekiel I et al (1989) Inhibition of eukaryotic translation by nucleoside 5′-monophosphate analogues of mRNA 5′-cap: Changes in N7 substituent affect analogue activity. Biochemistry 28:4771–4778
CAS
PubMed
CrossRef
Google Scholar
Darzynkiewicz E, Stepinski J, Tahara SM et al (1990) Synthesis, conformation and hydrolytic stability of P1, P3-dinucleoside triphosphates related to mRNA 5′-cap, and comparative kinetic studies on their nucleoside and nucleoside monophosphate analogs. Nucleosides Nucleotides 9:599–618
CAS
CrossRef
Google Scholar
Darzynkiewicz E, Rhoads RE, Stepinski J (2006) Synthesis and use of anti-reverse mRNA cap analogues. US Patent 7,074,596, 11 July 2006
Google Scholar
Deshmukh MV, Jones BN, Quang-Dang D-U et al (2008) mRNA decapping is promoted by an RNA binding channel in Dcp2. Mol Cell 29:324–336
CAS
PubMed
CrossRef
Google Scholar
Djuranovic S, Zinchenko MK, Hur JK et al (2010) Allosteric regulation of Argonaute proteins by miRNAs. Nat Struct Mol Biol 17:144–150
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Eckstein F (1970) Nucleoside phosphorothioates. J Am Chem Soc 92:4718–4723
CAS
PubMed
CrossRef
Google Scholar
Engel R (1977) Phosphonates as analogs of natural phosphates. Chem Rev 77:349–367
CAS
CrossRef
Google Scholar
Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379
CAS
PubMed
CrossRef
Google Scholar
Fischer U, Lührmann R (1990) An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249:786–790
CAS
PubMed
CrossRef
Google Scholar
Fischer U, Darzynkiewicz E, Tahara SM et al (1991) Diversity in the signals required for nuclear accumulation of U snRNPs and variety in the pathways of nuclear transport. J Cell Biol 113:705–714
CAS
PubMed
CrossRef
Google Scholar
Fischer U, Sumpter V, Sekine M et al (1993) Nucleocytoplasmic transport of u snRNPs – definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J 12:573–583
CAS
PubMed Central
PubMed
Google Scholar
Frank F, Fabian MR, Stepinski J et al (2011) Structural analysis of 5′-mRNA-cap interactions with the human AGO2 MID domain. EMBO Rep 12:415–420
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Fukuoka K, Suda F, Suzuki R et al (1994a) One-pot reaction for the synthesis of m7G5′pppG and m7G5′pppA by using an activatable bifunctional phoshorylating reagent. Tetrahedron Lett 35:1063–1066
CAS
CrossRef
Google Scholar
Fukuoka K, Suda F, Suzuki R et al (1994b) Large scale synthesis of the cap part in messenger RNA using new type of bifunctional phoshorylating reagent. Nucleosides Nucleotides 13:1557–1567
CAS
CrossRef
Google Scholar
Furuichi Y, Shatkin AJ (2000) Viral and cellular mRNA capping: Past and prospects. Adv Virus Res 55:135–184
CAS
PubMed
CrossRef
Google Scholar
Gingras AC, Raught B (1999) eIF4E initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963
CAS
PubMed
CrossRef
Google Scholar
Glass RS, Singh WP, Jung W et al (1993) Monoselenophosphate: Synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32:12555–12559
CAS
PubMed
CrossRef
Google Scholar
Graff JR, Konicek BW, Vincent TM et al (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117:2638–2648
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Graff JR, Konicek BW, Carter JH et al (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68:631–634
CAS
PubMed
CrossRef
Google Scholar
Grudzien E, Stepinski J, Jankowska-Anyszka M et al (2004) Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. RNA 10:1479–1487
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Grudzien E, Kalek M, Jemielity J et al (2006) Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 281:1857–1867
CAS
PubMed
CrossRef
Google Scholar
Grudzien-Nogalska E, Stepinski J, Jemielity J et al (2007) Synthesis of anti-reverse cap analogs (ARCAs) and their application in protein translation and stability. Methods Enzymol 431:203–227
CAS
PubMed
CrossRef
Google Scholar
Grudzien-Nogalska E, Kowalska J, Su W et al (2013) Synthetic mRNAs with superior translation and stability properties. Methods Mol Biol 969:55–72
CAS
PubMed
CrossRef
Google Scholar
Guranowski A, Wojdyla AM, Zimny J et al (2010a) Recognition of different nucleotidyl-derivatives as substrates of reactions catalyzed by various HIT-proteins. New J Chem 34:888–893
CAS
CrossRef
Google Scholar
Guranowski A, Wojdyla AM, Zimny J et al (2010b) Dual activity of certain HIT-proteins: A. thaliana Hint4 and C-elegans DcpS act on adenosine 5′-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP). FEBS Lett 584:93–98
CAS
PubMed
CrossRef
Google Scholar
Hamm J, Mattaj IW (1990) Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63:109–118
CAS
PubMed
CrossRef
Google Scholar
Hamm J, Darzynkiewicz E, Tahara SM et al (1990) The trimethylguanosine cap structure of U1 snRNA Is a component of a bipartite nuclear targeting signal. Cell 62:569–577
CAS
PubMed
CrossRef
Google Scholar
Han QW, Gaffney BL, Jones RA (2006) One-flask synthesis of dinucleoside tetra- and pentaphosphates. Org Lett 8:2075–2077
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Hata T, Nakagawa I, Shimotohno K et al (1976) The synthesis of α, γ-dinucleoside triphosphates. The confronted nucleotide structure found at the 5′-terminus of eukaryote messenger ribonucleic acid. Chem Lett 1976:987–990
CrossRef
Google Scholar
He KH, Hasan A, Krzyzanowska B et al (1998) Synthesis and separation of diastereomers of ribonucleoside 5′-(α-P-borano)triphosphates. J Org Chem 63:5769–5773
CAS
PubMed
CrossRef
Google Scholar
Hendler SS, Fürer E, Srinivasan PR (1970) Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. Biochemistry 9:4141–4153
CAS
PubMed
CrossRef
Google Scholar
Hickey ED, Weber LA, Baglioni C (1976) Inhibition of initiation of protein synthesis by 7-methylguanosine-5′-monophosphate. Proc Natl Acad Sci U S A 73:19–23
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Hickey ED, Weber LA, Baglioni C et al (1977) Relation between inhibition of protein synthesis and conformation of 5′-phosphorylated 7-methylguanosine derivatives. J Mol Biol 109:173–183
CAS
PubMed
CrossRef
Google Scholar
Hoard DE, Ott DG (1965) Conversion of mono- and oligodeoxyribonucleotides to 5′-triphosphates. J Am Chem Soc 87:1785–1788
CAS
PubMed
CrossRef
Google Scholar
Hodel AE, Gershon PD, Quiocho FA (1998) Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443–447
CAS
PubMed
CrossRef
Google Scholar
Honcharenko M, Romanowska J, Alvira M et al (2012) Capping of oligonucleotides with “clickable” m3G-CAPs. RSC Adv 2:12949–12962
CAS
CrossRef
Google Scholar
Honcharenko M, Zytek M, Bestas B et al (2013) Synthesis and evaluation of stability of m3G-CAP analogues in serum-supplemented medium and cytosolic extract. Bioorg Med Chem 21(24):7921–7928, http://dx.doi.org/10.1016/j.bmc.2013.10.002
CAS
PubMed
CrossRef
Google Scholar
Huber J, Cronshagen U, Kadokura M et al (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17:4114–4126
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Imai KI, Fujii S, Takanohashi K et al (1969) Studies on phosphorylation. 4. Selective phosphorylation of primary hydroxyl group in nucleosides. J Org Chem 34:1547–1550
CAS
CrossRef
Google Scholar
Inoue K, Ohno M, Sakamoto H et al (1989) Effect of the cap structure on pre-messenger-RNA splicing in Xenopus oocyte nuclei. Genes Dev 3:1472–1479
CAS
PubMed
CrossRef
Google Scholar
Iwase R, Sekine M, Hata T et al (1988) A new method for the synthesis of capped oligoribonucleotides by use of an appropriately protected 7-methylguanosine diphosphate derivative as a donor for the triphosphate bond formation. Tetrahedron Lett 29:2969–2972
CAS
CrossRef
Google Scholar
Iwase R, Sekine M, Tokumoto Y et al (1989) Synthesis of N2, N2,7-trimethylguanosine cap derivatives. Nucleic Acids Res 17:8979–8989
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Iwase R, Maeda M, Fujiwara T et al (1992) Molecular design of eukaryotic messenger RNA and its chemical synthesis. Nucleic Acids Res 20:1643–1648
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Izaurralde E, Stepinski J, Darzynkiewicz E et al (1992) A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs. J Cell Biol 118:1287–1295
CAS
PubMed
CrossRef
Google Scholar
Izaurralde E, Lewis J, McGuigan C et al (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657–668
CAS
PubMed
CrossRef
Google Scholar
Izaurralde E, Lewis J, Gamberi C et al (1995) A cap-binding protein complex mediating U snRNA export. Nature 376:709–712
CAS
PubMed
CrossRef
Google Scholar
Jankowska M, Temeriusz A, Stolarski R et al (1993a) Synthesis of m2,7GTP- and m2,2,7GTP-Sepharose 4B: New affinity resins for isolation of cap binding proteins. Collect Czech Chem Commun 58(Special issue):132–137
Google Scholar
Jankowska M, Stepinski J, Stolarski R et al (1993b) Synthesis and properties of new NH2 and N7 substituted GMP and GTP 5′-mRNA cap analogues. Collect Czech Chem Commun 58(Special issue):138–141
Google Scholar
Jankowska M, Stepinski J, Stolarski R et al (1996) 1H NMR and fluorescence studies of new rnRNA 5′-cap analogues. Collect Czech Chem Commun 61(Special issue):S197–S202
CAS
Google Scholar
Jankowska-Anyszka M, Piecyk K (2011) Dinucleotide cap analogue affinity resins for purification of proteins that specifically recognize the 5′ end of mRNA. Bioorg Med Chem Lett 21:6131–6134
CAS
PubMed
CrossRef
Google Scholar
Jankowska-Anyszka M, Lamphear BJ, Aamodt EJ et al (1998) Multiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures. J Biol Chem 273:10538–10542
CAS
PubMed
CrossRef
Google Scholar
Jankowska-Anyszka M, Piecyk K, Samonina-Kosicka J (2011) Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5′ end of mRNA. Org Biomol Chem 9:5564–5572
CAS
PubMed
CrossRef
Google Scholar
Jarmolowski A, Boelens WC, Izaurralde E et al (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124:627–635
CAS
PubMed
CrossRef
Google Scholar
Jemielity J, Stepinski J, Jaremko M et al (2003a) Synthesis of novel mRNA 5′ cap-analogues: Dinucleoside P1, P3-tri- P1, P4-tetra- and P1, P5-pentaphosphates. Nucleosides Nucleotides Nucleic Acids 22:691–694
CAS
PubMed
CrossRef
Google Scholar
Jemielity J, Fowler T, Zuberek J et al (2003b) Novel ‘anti-reverse’ cap analogs with superior translational properties. RNA 9:1108–1122
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Jemielity J, Pietrowska-Borek M, Starzynska E et al (2005a) Synthesis and enzymatic characterization of methylene analogs of adenosine 5′-tetraphosphate (p4A). Nucleosides Nucleotides Nucleic Acids 24:589–593
CAS
PubMed
CrossRef
Google Scholar
Jemielity J, Heinonen P, Lönnberg H et al (2005b) A novel approach to solid phase chemical synthesis of oligonucleotide mRNA cap analogs. Nucleosides Nucleotides Nucleic Acids 24:601–605
CAS
PubMed
CrossRef
Google Scholar
Jemielity J, Kowalska J, Rydzik AM et al (2010) Synthetic mRNA cap analogs with a modified triphosphate bridge – synthesis, applications and prospects. New J Chem 34:829–844
CAS
CrossRef
Google Scholar
Jemielity J, Lukaszewicz M, Kowalska J et al (2012a) Synthesis of biotin labelled cap analogue – incorporable into mRNA transcripts and promoting cap-dependent translation. Org Biomol Chem 10:8570–8574
CAS
PubMed
CrossRef
Google Scholar
Jemielity J, Grudzien-Nogalska E, Kowalska J et al (2012b) Synthesis and use of anti-reverse phosphorothioate analogs of the messenger RNA cap. US Patent 08,153,773, 10 Apr 2012
Google Scholar
Jia Y, Chiu T-L, Amin EA et al (2010) Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn-7-GMP. Eur J Med Chem 45:1304–1313
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Joshi B, Cameron A, Jagus R (2004) Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203
CAS
PubMed
CrossRef
Google Scholar
Kadokura M, Wada T, Urashima C et al (1997) Efficient synthesis of γ-methyl-capped guanosine 5′-triphosphate as a 5′-terminal unique structure of U6 RNA via a new triphosphate bond formation involving activation of methyl phosphorimidazolidate using ZnCl2 as a catalyst in DMF under anhydrous conditions. Tetrahedron Lett 38:8359–8362
CAS
CrossRef
Google Scholar
Kadokura M, Wada T, Seio K et al (2001) Solid-phase synthesis of 5′-terminal TMG-capped trinucleotide block of U1 snRNA. Tetrahedron Lett 42:8853–8856
CAS
CrossRef
Google Scholar
Kalek M, Jemielity J, Grudzien E et al (2005a) Synthesis and biochemical properties of novel mRNA 5′ cap analogs resistant to enzymatic hydrolysis. Nucleosides Nucleotides Nucleic Acids 24:615–621
CAS
PubMed
CrossRef
Google Scholar
Kalek M, Jemielity J, Stepinski J et al (2005b) A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides. Tetrahedron Lett 46:2417–2421
CAS
CrossRef
Google Scholar
Kalek M, Jemielity J, Darzynkiewicz ZM et al (2006) Enzymatically stable 5′ mRNA cap analogs: synthesis and binding studies with human DcpS decapping enzyme. Bioorg Med Chem 14:3223–3230
CAS
PubMed
CrossRef
Google Scholar
Keiper BD, Lamphear BJ, Deshpande AM et al (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275:10590–10596
CAS
PubMed
CrossRef
Google Scholar
Kijewska K, Jarzebinska A, Kowalska J et al (2013) Magnetic-nanoparticle-decorated polypyrrole microvessels: Toward encapsulation of mRNA cap analogues. Biomacromolecules 14:1867–1876
CAS
PubMed
CrossRef
Google Scholar
Kim J, Chou T-F, Griesgraber GW et al (2004) Direct measurement of nucleoside monophosphate delivery from a phosphoramidate pronucleotide by stable isotope labeling and LC-ESI−-MS/MS. Mol Pharm 1:102–111
CAS
PubMed
CrossRef
Google Scholar
Kiriakidou M, Tan GS, Lamprinaki S et al (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151
CAS
PubMed
CrossRef
Google Scholar
Kohno K, Nishiyama S, Kamimura T et al (1985) Chemical synthesis of capped RNA fragments and their ability to complex with eukaryotic ribosomes. Nucleic Acids Res Symp Ser 16:233–236
CAS
Google Scholar
Konarska MM, Padgett RA, Sharp PA (1984) Recognition of cap structure in splicing in vitro of messenger-RNA precursors. Cell 38:731–736
CAS
PubMed
CrossRef
Google Scholar
Konicek BW, Dumstorf CA, Graff JR (2008) Targeting the eIF4E translation initiation complex for cancer therapy. Cell Cycle 7:2466–2471
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Charles I (2010a) Synthesis of new dinucleotide mRNA cap analogs containing 2,6-diaminopurine moiety. Lett Org Chem 7:200–202
CAS
CrossRef
Google Scholar
Kore AR, Charles I (2010b) Synthesis and evaluation of 2′-O-allyl substituted dinucleotide cap analog for mRNA translation. Bioorg Med Chem 18:8061–8065
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Shanmugasundaram M (2008) Synthesis and biological evaluation of trimethyl-substituted cap analogs. Bioorg Med Chem Lett 18:880–884
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Shanmugasundaram M, Charles I et al (2007) Synthesis and application of 2′-fluoro-substituted cap analogs. Bioorg Med Chem Lett 17:5295–5299
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Kore AR, Charles I, Shanmugasundaram M et al (2008a) Recent developments in 5′-terminal cap analogs: synthesis and biological ramifications. Mini Rev Org Chem 5:179–192
CAS
CrossRef
Google Scholar
Kore AR, Shanmugasundaram M, Vlassov AV (2008b) Synthesis and application of a new 2′,3′-isopropylidene guanosine substituted cap analog. Bioorg Med Chem Lett 18:4828–4832
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Shanmugasundaram M, Charles I et al (2009) Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: Synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 131:6364–6365
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Shanmugasundaram M, Barta TJ (2010a) Synthesis and substrate validation of cap analogs containing 7-deazaguanosine moiety by RNA polymerase. Nucleosides Nucleotides Nucleic Acids 29:821–830
CAS
PubMed
CrossRef
Google Scholar
Kore AR, Charles I, Shanmugasundaram M (2010b) Organic synthesis and improved biological properties of modified mRNA cap analogs. Curr Org Chem 14:1083–1098
CAS
CrossRef
Google Scholar
Koukhareva II, Lebedev AV (2004) Chemical route to the capped RNAs. Nucleosides Nucleotides Nucleic Acids 23:1667–1680
CAS
PubMed
CrossRef
Google Scholar
Kowalska J, Lewdorowicz M, Zuberek J et al (2005) Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5′,5′-triphosphate chain. Nucleosides Nucleotides Nucleic Acids 24:595–600
CAS
PubMed
CrossRef
Google Scholar
Kowalska J, Lewdorowicz M, Zuberek J et al (2007a) Assignment of the absolute configuration of P-chiral 5′ mRNA cap analogues containing phosphorothioate moiety. Nucleosides Nucleotides Nucleic Acids 26:1301–1305
CAS
PubMed
CrossRef
Google Scholar
Kowalska J, Lewdorowicz M, Darzynkiewicz E et al (2007b) A simple and rapid synthesis of nucleotide analogues containing a phosphorothioate moiety at the terminal position of the phosphate chain. Tetrahedron Lett 48:5475–5479
CAS
CrossRef
Google Scholar
Kowalska J, Zuberek J, Darzynkiewicz ZM et al (2008a) Synthesis and properties of boranophosphate mRNA cap analogues. In: Hocek M (ed) Collection symposium series, vol 10. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, pp 383–385
Google Scholar
Kowalska J, Lewdorowicz M, Zuberek J et al (2008b) Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14:1119–1131
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Kowalska J, Lukaszewicz M, Zuberek J et al (2009) Phosphoroselenoate dinucleotides for modification of mRNA 5′ end. Chembiochem 10:2469–2473
CAS
PubMed
CrossRef
Google Scholar
Kowalska J, Osowniak A, Zuberek J et al (2012) Synthesis of nucleoside phosphosulfates. Bioorg Med Chem Lett 22:3661–3664
CAS
PubMed
CrossRef
Google Scholar
Kowalska J, Jemielity J, Darzynkiewicz E et al (2013) mRNA cap analogs. US Patent 08,519,110, 27 Aug 2013
Google Scholar
Kuhn AN, Diken M, Kreiter S et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971
CAS
PubMed
CrossRef
Google Scholar
Lewdorowicz M, Yoffe Y, Zuberek J et al (2004) Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10:1469–1478
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Lewdorowicz M, Jemielity J, Kierzek R et al (2007a) Solid-supported synthesis of 5′-mRNA cap-4 from trypanosomatides. Nucleosides Nucleotides Nucleic Acids 26:1329–1333
CAS
PubMed
CrossRef
Google Scholar
Lewdorowicz M, Stepinski J, Kierzek R et al (2007b) Synthesis of Leishmania cap-4 intermediates, cap-2 and cap-3. Nucleosides Nucleotides Nucleic Acids 26:1339–1348
CAS
PubMed
CrossRef
Google Scholar
Lewis J, Izaurralde E, Jarmolowski A et al (1996) A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev 10:1683–1698
CAS
PubMed
CrossRef
Google Scholar
Li P, Shaw BR (2004) Convenient synthesis of nucleoside borane diphosphate analogues: Deoxy- and ribonucleoside 5′-Pα-boranodiphosphates. J Org Chem 69:7051–7057
CAS
PubMed
CrossRef
Google Scholar
Li P, Xu ZH, Liu HY et al (2005) Synthesis of α-P-modified nucleoside diphosphates with ethylenediamine. J Am Chem Soc 127:16782–16783
CAS
PubMed
CrossRef
Google Scholar
Li S, Jia Y, Jacobson B, McCauley J et al (2013) Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced elF4E proteasomal degradation. Mol Pharm 10:523–531
CAS
PubMed
CrossRef
Google Scholar
Liu SW, Jiao X, Welch S et al (2008) Analysis of mRNA decapping. Methods Enzymol 448:3–21
CAS
PubMed
CrossRef
Google Scholar
Liu W, Zhao R, McFarland C et al (2009) Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps. J Biol Chem 284:31336–31349
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Liu W, Jankowska-Anyszka M, Piecyk K et al (2011) Structural basis for nematode eIF4E binding an m2,2,7G-cap and its implications for translation initiation. Nucleic Acids Res 39:8820–8832
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Lohrmann R, Orgel LE (1978) Preferential formation of (2′-5′)-linked internucleotide bonds in non-enzymatic reactions. Tetrahedron 34:853–855
CAS
CrossRef
Google Scholar
Ludwig J (1981) A new route to nucleoside 5′-triphosphates. Acta Biochim Biophys Hung 16:131–133
CAS
Google Scholar
Ludwig J, Eckstein F (1989) Rapid and efficient synthesis of nucleoside 5′-O-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J Org Chem 54:631–635
CAS
CrossRef
Google Scholar
Ma QF, Bathurst IC, Barr PJ et al (1992) New thymidine triphosphate analog inhibitors of human immunodeficiency virus-1 reverse-transcriptase. J Med Chem 35:1938–1941
CAS
PubMed
CrossRef
Google Scholar
Marcotrigiano J, Gingras AC, Sonenberg N et al (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961
CAS
PubMed
CrossRef
Google Scholar
Marshallsay C, Lührmann R (1994) In-vitro nuclear import of snRNPs – cytosolic factors mediate m3G-cap dependence of U1 and U2 snRNP transport. EMBO J 13:222–231
CAS
PubMed Central
PubMed
Google Scholar
Mathonnet G, Fabian MR, Svitkin YV et al (2007) MicroRNA function in vitro: inhibition of translational initiation by targeting eIF4F. Science 317:1764–1767
CAS
PubMed
CrossRef
Google Scholar
Matsuo H, Li H, McGuire AM et al (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724
CAS
PubMed
CrossRef
Google Scholar
Matsuo H, Moriguchi T, Takagi T et al (2000) Efficient synthesis of 13C,15N-labeled RNA containing the cap structure m7GpppA. J Am Chem Soc 122:2417–2421
CAS
CrossRef
Google Scholar
Mattaj IW (1986) Cap trimethylation of U-snRNA is cytoplasmic and dependent on U-snRNP protein-binding. Cell 46:905–911
CAS
PubMed
CrossRef
Google Scholar
Mazza C, Ohno M, Segref A et al (2001) Crystal structure of the human nuclear cap binding complex. Mol Cell 8:383–396
CAS
PubMed
CrossRef
Google Scholar
Mazza C, Segref A, Mattaj IW et al (2002) Large-scale induced fit recognition of m7GpppG cap analogue by the human nuclear cap binding complex. EMBO J 21:5548–5557
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Mikkola S, Salomaki S, Zhang Z et al (2005) Preparation and properties of mRNA 5′-cap structure. Curr Org Chem 9:999–1022
CAS
CrossRef
Google Scholar
Minshall N, Reiter MH, Weil D et al (2007) CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282:37389–37401
CAS
PubMed
CrossRef
Google Scholar
Mittra B, Zamudio JR, Bujnicki JM et al (2008) The TbMTr1 spliced leader RNA cap-1 2′-O-ribose methyltransferase from Trypanosoma brucei acts with substrate specificity. J Biol Chem 283:3161–3172
CAS
PubMed
CrossRef
Google Scholar
Miyoshi H, Dwyer DS, Keiper BD et al (2002) Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO J 21:4680–4690
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Moerke NJ, Aktas H, Chen H et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128:257–267
CAS
PubMed
CrossRef
Google Scholar
Moran JR, Whitesides GM (1984) A practical enzymatic-synthesis of (S
P)-adenosine 5′-O-(1-thiotriphosphate) ((S
P)-ATP-α-S). J Org Chem 49:704–706
CAS
CrossRef
Google Scholar
Moreno PMD, Wenska M, Lundin KE et al (2009) A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids. Nucleic Acids Res 37:1925–1935
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Mukaiyama T, Hashimoto M (1971) Phosphorylation by oxidation-reduction condensation. Preparation of active phosphorylating reagents. Bull Chem Soc Jpn 44:2284
CAS
CrossRef
Google Scholar
Murray AW, Atkinson MR (1968) Adenosine 5′-phosphorothioate. A nucleotide analog that is a substrate competitive inhibitor or regulator of some enzymes that interact with adenosine 5′-phosphate. Biochemistry 7:4023–4029
CAS
PubMed
CrossRef
Google Scholar
Myers TC, Nakamura K, Flesher JW (1963) Phosphonic acid analogs of nucleoside phosphates.1. Synthesis of 5′-adenylyl methylenediphosphonate, a phosphonic acid analog of ATP. J Am Chem Soc 85:3292–3295
CAS
CrossRef
Google Scholar
Nakagawa I, Konya S, Ohtani S et al (1980) A “capping” agent: P1-S-phenyl P2-7-methylguanosine-5′ pyrophosphorothioate. Synthesis 1980:556–557
CrossRef
Google Scholar
Natarajan A, Moerke N, Fan YH et al (2004) Synthesis of fluorescein labeled 7-methylguanosinemonophosphate. Bioorg Med Chem Lett 14:2657–2660
CAS
PubMed
CrossRef
Google Scholar
Niedzwiecka A, Marcotrigiano J, Stepinski J et al (2002) Biophysical studies of eIF4E cap-binding protein: Recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615–635
CAS
PubMed
CrossRef
Google Scholar
Niedzwiecka A, Stepinski J, Antosiewicz JM et al (2007) Biophysical approach to studies of cap-eIF4E interaction by synthetic cap analogues. Methods Enzymol 430:209–246
CAS
PubMed
CrossRef
Google Scholar
Ohkubo A, Kondo Y, Suzuki M et al (2013) Chemical synthesis of U1 snRNA derivatives. Org Lett 15:4386–4389
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967
CAS
PubMed Central
PubMed
Google Scholar
Peng ZH, Sharma V, Singleton SF et al (2002) Synthesis and application of a chain-terminating dinucleotide mRNA cap analog. Org Lett 4:161–164
CAS
PubMed
CrossRef
Google Scholar
Peyrane F, Selisko B, Decroly E et al (2007) High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2′O positions. Nucleic Acids Res 35:e26
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Piecyk K, Davis RE, Jankowska-Anyszka M (2012) 5′-Terminal chemical capping of spliced leader RNAs. Tetrahedron Lett 53:4843–4847
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Ren JH, Goss DJ (1996) Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins. Nucleic Acids Res 24:3629–3634
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Rupprecht KM, Sonenberg N, Shatkin AJ et al (1981) Design and preparation of affinity columns for the purification of eukaryotic messenger ribonucleic-acid cap binding-protein. Biochemistry 20:6570–6577
CAS
PubMed
CrossRef
Google Scholar
Ruth JL, Cheng YC (1981) Nucleoside analogs with clinical potential in antivirus chemotherapy – the effect of several thymidine and 2′-deoxycytidine analog 5′-triphosphates on purified human (alpha, beta) and herpes-simplex virus (type-1, type-2) DNA-polymerases. Mol Pharmacol 20:415–422
CAS
PubMed
Google Scholar
Rydzik AM, Lukaszewicz M, Zuberek J et al (2009) Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′,5′ bridge containing methylenebis(phosphonate) modification. Org Biomol Chem 7:4763–4776
CAS
PubMed
CrossRef
Google Scholar
Rydzik AM, Kulis M, Lukaszewicz M et al (2012) Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety-fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem 20:1699–1710
CAS
PubMed
CrossRef
Google Scholar
Sasavage NL, Friderici K, Rottman FM (1979) Specific-inhibition of capped messenger-RNA translation in vitro by m7G5′pppp5′G and m7G5′pppp5′-m7G. Nucleic Acids Res 6:3613–3624
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Sawai H, Wakai H, Shimazu M (1991) Facile synthesis of cap portion of messenger RNA by Mn(II) ion catalyzed pyrophosphate formation in aqueous solution. Tetrahedron Lett 32:6905–6906
CAS
CrossRef
Google Scholar
Sawai H, Shimazu M, Wakai H et al (1992) Divalent metal ion-catalyzed pyrophosphate bond formation in aqueous solution. Synthesis of nucleotides containing polyphosphate. Nucleosides Nucleotides 11:773–785
CAS
CrossRef
Google Scholar
Sawai H, Wakai H, Nakamura-Ozaki A (1999) Synthesis and reactions of nucleoside 5′-diphosphate imidazolide. A nonenzymatic capping agent for 5′-monophosphorylated oligoribonucleotides in aqueous solution. J Org Chem 64:5836–5840
CAS
CrossRef
Google Scholar
Sekine M, Nishiyama S, Kamimura T et al (1985) Chemical synthesis of capped oligoribonucleotides, m7G5′pppAUG and m7g5′pppAUGACC. Bull Chem Soc Jpn 58:850–860
CAS
CrossRef
Google Scholar
Sekine M, Iwase R, Hata T et al (1989) Synthesis of capped oligoribonucleotides by use of protected 7-methylguanosine 5′-diphosphate derivatives. J Chem Soc Perkin Trans I 1989:969–978
CrossRef
Google Scholar
Sekine M, Kadokura M, Satoh T et al (1996) Chemical synthesis of a 5′-terminal TMG-capped triribonucleotide m3
2,2,7G5′pppAmpUmpA of U1 RNA. J Org Chem 61:4412–4422
CAS
PubMed
CrossRef
Google Scholar
Setondji J, Remy P, Dirheime G et al (1970) Analogues of nucleoside polyphosphates. 4. synthesis of adenosine 5′-hypophosphate – a structural analogue of ADP. Biochim Biophys Acta 224:136–143
CAS
PubMed
CrossRef
Google Scholar
Shimazu M, Shinozuka K, Sawai H (1990) Facile synthesis of nucleotides containing polyphosphates by Mn(II) and Cd(II) ion-catalyzed pyrophosphate bond formation in aqueous solution. Tetrahedron Lett 31:235–238
CAS
CrossRef
Google Scholar
Smietanski M, Werner M, Purta E et al (2014) Structural analysis of human 2′–O-ribose methyltransferases involved in mRNA cap structure formation. Nat Commun 5:3004. doi:10.1038/ncomms4004
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Sonenberg N, Rupprecht KM, Hecht SM et al (1979) Eukaryotic messenger-RNA cap binding-protein – purification by affinity chromatography on Sepharose-coupled m7GDP. Proc Natl Acad Sci USA 76:4345–4349
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Song M-G, Bail S, Kiledjian M (2013) Multiple Nudix family proteins possess mRNA decapping activity. RNA 19:390–399
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Sood A, Shaw BR, Spielvogel BF (1990) Boron-containing nucleic-acids. 2. Synthesis of oligodeoxynucleoside boranophosphates. J Am Chem Soc 112:9000–9001
CAS
CrossRef
Google Scholar
Stachelska A, Wieczorek Z, Ruszczynska K et al (2002) Interaction of three Caenorhabditis elegans isoforms of translation initiation factor eIF4E with mono- and trimethylated mRNA 5′ cap analogues. Acta Biochim Pol 49:671–682
CAS
PubMed
Google Scholar
Stepinski J, Grabowska L, Darzynkiewicz E et al (1990) Synthesis, conformation and hydrolytic stability of modified mRNA 5′-cap structures: P1,P3-dinucleoside triphosphates derived from guanosine and acyclic analogues of 7-methyl-, N2,7-dimethyl- and N2,N2,7-trimethylguanosines. Collect Czech Chem Commun 55(Special Issue):117–120
Google Scholar
Stepinski J, Bretner M, Jankowska M et al (1995) Synthesis and properties of P1, P2-, P1, P3- and P1, P4-dinucleoside di-, tri- and tetraphosphate mRNA 5′-cap analogues. Nucleosides Nucleotides 14:717–721
CAS
Google Scholar
Stepinski J, Waddell C, Stolarski R et al (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogues 7-methyl-(3′-O-methyl)GpppG and 7-methyl-(3′-deoxy)GpppG. RNA 7:1486–1495
CAS
PubMed Central
PubMed
Google Scholar
Stepinski J, Jemielity J, Lewdorowicz M et al (2002) Catalytic efficiency of divalent metal salts in dinucleoside 5′,5′-triphosphate bond formation. In: Točik Z, Hocek M (eds) Collection symposium series, vol 5. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, pp 154–158
Google Scholar
Stepinski J, Zuberek J, Jemielity J et al (2005) Novel dinucleoside 5′,5′-triphosphate cap analogues. Synthesis and affinity for murine translation factor eiF4E. Nucleosides Nucleotides Nucleic Acids 24:629–633
CAS
PubMed
CrossRef
Google Scholar
Stepinski J, Wojcik J, Sienkiewicz A et al (2007) Synthesis and NMR spectral properties of spin labelled mRNA 5′ cap analogue, a new tool for biochemical studies of cap binding proteins. J Phys Condens Matter 19:285202 (10 pp)
CrossRef
CAS
Google Scholar
Stock JA (1979) Synthesis of phosphonate analogs of thymidine diphosphate and triphosphate from 5′-O-toluenesulfonylthymidine. J Org Chem 44:3997–4000
CAS
CrossRef
Google Scholar
Strasser A, Dickmanns A, Lührmann R et al (2005) Structural basis for m3G-cap-mediated nuclear import of spliceosomal UsnRNPs by snurportin1. EMBO J 24:2235–2243
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Strenkowska M, Kowalska J, Lukaszewicz M et al (2010) Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. New J Chem 34:993–1007
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Strenkowska M, Wanat P, Ziemniak M et al (2012) Preparation of synthetically challenging nucleotides using cyanoethyl P-imidazolides and microwaves. Org Lett 14:4782–4785
CAS
PubMed
CrossRef
Google Scholar
Su W, Slepenkov S, Grudzien-Nogalska E et al (2011) Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 17:978–988
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Szczepaniak SA, Jemielity J, Zuberek J et al (2008) Bisphosphonate mRNA cap analog attached to Sepharose for affinity chromatography of decapping enzymes. Nucleic Acids Symp Ser 52:295–296
CAS
CrossRef
Google Scholar
Szczepaniak SA, Zuberek J, Darzynkiewicz E et al (2012) Affinity resins containing enzymatically resistant mRNA cap analogs – a new tool for the analysis of cap-binding proteins. RNA 18:1421–1432
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Thillier Y, Decroly E, Morvan F et al (2012) Synthesis of 5′ cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-N
7)-methyl transferase. RNA 18:856–868
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Tomasz J, Vaghefi MM, Ratsep PC et al (1988) Nucleoside imidodiphosphates synthesis and biological-activities. Nucleic Acids Res 16:8645–8664
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Topisirovic I, Svitkin YV, Sonenberg N et al (2011) Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA 2:277–298
CAS
PubMed
CrossRef
Google Scholar
Townsend LB, Robins RK (1963) Ring cleavage of purine nucleosides to yield possible biogenic precursors of pteridines and riboflavin. J Am Chem Soc 85:242–243
CAS
CrossRef
Google Scholar
von der Haar T, Gross JD, Wagner G et al (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene. Nat Struct Mol Biol 11:503–511
PubMed
CrossRef
CAS
Google Scholar
Warminski M, Kowalska J, Buck J et al (2013) The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorg Med Chem Lett 23:3753–3758
CAS
PubMed
CrossRef
Google Scholar
Webb NR, Chari RVJ, DePillis G et al (1984) Purification of the messenger RNA cap-binding protein using a new affinity medium. Biochemistry 23:177–181
CAS
PubMed
CrossRef
Google Scholar
Weber LA, Feman ER, Hickey ED et al (1976) Inhibition of HeLa cell messenger RNA translation by 7-methylguanosine 5′-monophosphate. J Biol Chem 251:5657–5662
CAS
PubMed
Google Scholar
Westman B, Beeren L, Grudzien E et al (2005) The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro. RNA 11:1505–1513
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Worch R, Stepinski J, Niedzwiecka A et al (2005a) Novel way of capping mRNA trimer and studies of its interaction with human nuclear cap-binding complex. Nucleosides Nucleotides Nucleic Acids 24:1131–1134
CAS
PubMed
CrossRef
Google Scholar
Worch R, Niedzwiecka A, Stepinski J et al (2005b) Specificity of recognition of mRNA cap by human nuclear cap-binding complex. RNA 11:1355–1363
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Wypijewska del Nogal A, Surleac MD, Kowalska J et al (2013) Analysis of decapping scavenger cap complex using cap analogs reveals molecular determinants for efficient cap binding. FEBS J 280(24):6508–6527. doi:10.1111/febs.12553
CAS
PubMed
CrossRef
Google Scholar
Wypijewska A, Bojarska E, Stepinski J et al (2010) Structural requirements for Caenorhabditis elegans DcpS substrates based on fluorescence and HPLC enzyme kinetic studies. FEBS J 277:3003–3013
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Wypijewska A, Bojarska E, Lukaszewicz M et al (2012) 7-Methylguanosine diphosphate (m7GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity. Biochemistry 51:8003–8013
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yamaguchi K, Nakagawa I, Sekine M et al (1984) Chemical synthesis of the 5′-terminal part bearing cap structure of messenger RNA of cytoplasmic polyhedrosis virus (CPV): m7G5′pppAmpG and m7G5′pppAmpGpU. Nucleic Acids Res 12:2939–2954
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yisraeli JK, Melton DA (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA-polymerases. Methods Enzymol 180:42–50
CAS
PubMed
CrossRef
Google Scholar
Yoffe Y, Zuberek J, Lewdorowicz M et al (2004) Cap-binding activity of an eIF4E homolog from Leishmania. RNA 10:1764–1775
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yoffe Y, Zuberek J, Lerer A et al (2006) Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania. Eukaryot Cell 5:1969–1979
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yoffe Y, Léger M, Zinoviev A et al (2009) Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res 37:3243–3253
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yoshikawa M, Kato T, Takenishi T (1967) A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett 8:5065–5068
CrossRef
Google Scholar
Yount RG, Babcock D, Ballanty W et al (1971) Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry 10:2484–2489
CAS
PubMed
CrossRef
Google Scholar
Zdanowicz A, Thermann R, Kowalska J et al (2009) Drosophila miR2 Primarily Targets the m7GpppN Cap Structure for Translational Repression. Mol Cell 35:881–888
CAS
PubMed
CrossRef
Google Scholar
Ziemniak M, Strenkowska M, Kowalska J et al (2013a) Potential therapeutic applications of RNA cap analogs. Future Med Chem 5:1141–1172
CAS
PubMed
CrossRef
Google Scholar
Ziemniak M, Szabelski M, Lukaszewicz M et al (2013b) Evaluation of fluorescent cap analogues for mRNA labeling. RSC Adv 3:20943–20958
CAS
CrossRef
Google Scholar
Zuberek J, Stepinski J, Niedzwiecka A et al (2002) Synthesis of tetraribonucleotide cap analogue m7GpppAm2′pUm2′pAm2′ and its interaction with eukaryotic initiation factor eIF4E. In: Točik Z, Hocek M (eds) Collection symposium series, vol 5. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, pp 399–403
Google Scholar
Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A et al (2003) Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: Intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 9:52–61
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Zuberek J, Jemielity J, Jablonowska A et al (2004) Influence of electric charge variation at residues 209 and 159 on interaction of eIF4E with the mRNA 5′ terminus. Biochemistry 43:5370–5379
CAS
PubMed
CrossRef
Google Scholar
Zuberek J, Kubacka D, Jablonowska A et al (2007) Weak binding affinity of human 4EHP for mRNA cap analogs. RNA 13:691–697
CAS
PubMed Central
PubMed
CrossRef
Google Scholar