Skip to main content

Towards Defined DNA and RNA Delivery Vehicles Using Nucleic Acid Nanotechnology

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

  • 2814 Accesses

Abstract

Both DNA and RNA nanostructures show exceptional programmability, modularity, and self-assembly ability. Using DNA or RNA molecules it is possible to assemble monodisperse particles that are homogeneous in size and shape and with identical positioning of surface modifications. For therapeutic applications such nanoparticles are of particular interest as they can be tailored to target cells and reduce unwanted side effects due to particle heterogeneity. Recently, DNA and RNA nanostructures have demonstrated this potential by delivery of drugs to specific cells in vitro and in vivo. This has launched an increasing interest to engineer-defined DNA and RNA vehicles for drug delivery. However, before this can be realized, key challenges must be overcome including structure integrity, efficient cell targeting, and drug release. The tunable nature of DNA and RNA assemblies allows for thorough investigations into various structural and functional features, which can address these challenges. To facilitate the synthesis process novel methods enable the construction of sophisticated structures and attachment of relevant functionalities. In this chapter we will discuss the state-of-the-art molecular designs and approaches to harness and use DNA and RNA nanostructures in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    PubMed Central  PubMed  CAS  Google Scholar 

  • Afonin KA, Grabow WW, Walker FM et al (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6:2022–2034

    PubMed Central  PubMed  CAS  Google Scholar 

  • Afonin KA, Kireeva M, Grabow WW et al (2012) Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett 12:5192–5195

    PubMed Central  PubMed  CAS  Google Scholar 

  • Andersen FF, Knudsen B, Oliveira CLP et al (2008) Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–1119

    PubMed Central  PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    PubMed  CAS  Google Scholar 

  • Bazile D, Prud’homme C, Bassoullet MT et al (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    PubMed  CAS  Google Scholar 

  • Bhatia D, Surana S, Chakraborty S et al (2011) A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2:339

    PubMed  Google Scholar 

  • Bramsen JB (2011) Chemical modification of small interfering RNA. Methods Mol Biol 721:77–103

    PubMed  CAS  Google Scholar 

  • Chen J, Seeman N (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633

    PubMed  CAS  Google Scholar 

  • Chen C, Sheng S, Shao Z et al (2000) A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 275:17510–17516

    PubMed  CAS  Google Scholar 

  • Chworos A, Severcan I, Koyfman AY et al (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    PubMed  CAS  Google Scholar 

  • Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17:503–524

    PubMed  CAS  Google Scholar 

  • Conway JW, McLaughlin CK, Castor KJ et al (2013) DNA nanostructure serum stability: greater than the sum of its parts. Chem Commun (Camb) 49:1172–1174

    CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CHJ et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    PubMed Central  PubMed  CAS  Google Scholar 

  • Delebecque CJ, Lindner AB, Silver P et al (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    PubMed  CAS  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H et al (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    PubMed  CAS  Google Scholar 

  • Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dill K, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    PubMed  CAS  Google Scholar 

  • Dinauer N, Balthasar S, Weber C et al (2005) Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 26:5898–5906

    PubMed  CAS  Google Scholar 

  • Douglas SM, Dietz H, Liedl T et al (2009a) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas SM, Marblestone AH, Teerapittayanon S et al (2009b) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    PubMed Central  PubMed  CAS  Google Scholar 

  • Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    PubMed  CAS  Google Scholar 

  • Duckworth BP, Chen Y, Wollack JW et al (2007) A universal method for the preparation of covalent protein-DNA conjugates for use in creating protein nanostructures. Angew Chem Int Ed Engl 46:8819–8822

    PubMed  CAS  Google Scholar 

  • Endo M, Yamamoto S, Tatsumi K et al (2013) RNA-templated DNA origami structures. Chem Commun (Camb) 49:2879–2881

    CAS  Google Scholar 

  • Erben CM, Goodman RP, Turberfield AJ (2006) Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed Engl 45:7414–7417

    PubMed  CAS  Google Scholar 

  • Fishler R, Artzy-Schnirman A, Peer E et al (2012) Mixed alkanethiol monolayers on submicrometric gold patterns: a controlled platform for studying cell-ligand interactions. Nano Lett 12:4992–4996

    PubMed  CAS  Google Scholar 

  • Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–4443

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    PubMed  CAS  Google Scholar 

  • Goodman RP, Schaap IAT, Tardin CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    PubMed  CAS  Google Scholar 

  • Grabow WW, Zakrevsky P, Afonin K et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 1:878–887

    Google Scholar 

  • Guo P, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236:690–694

    PubMed  CAS  Google Scholar 

  • Guo P, Zhang C, Chen C et al (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    PubMed  CAS  Google Scholar 

  • Guo S, Tschammer N, Mohammed S et al (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guo S, Huang F, Guo P (2006) Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther 13:814–820

    PubMed Central  PubMed  CAS  Google Scholar 

  • Han D, Pal S, Liu Y et al (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    PubMed Central  PubMed  CAS  Google Scholar 

  • Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    PubMed  CAS  Google Scholar 

  • Haque F, Shu D, Shu Y et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257

    PubMed Central  PubMed  CAS  Google Scholar 

  • He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    PubMed  CAS  Google Scholar 

  • Hicke BJ, Stephens AW, Gould T et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668–678

    PubMed  CAS  Google Scholar 

  • Hoeprich S, Zhou Q, Guo S et al (2003) Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther 10:1258–1267

    PubMed  CAS  Google Scholar 

  • Högberg B, Liedl T, Shih W (2009) Folding DNA origami from a double-stranded source of scaffold. J Am Chem Soc 131:9154–9155

    PubMed Central  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    PubMed  Google Scholar 

  • Huang J, Grater SV, Corbellini F et al (2009) Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 9:1111–1116

    PubMed Central  PubMed  CAS  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543

    PubMed  CAS  Google Scholar 

  • Jaeger L, Leontis NB (2000) Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angew Chem Int Ed Engl 39:2521–2524

    PubMed  CAS  Google Scholar 

  • Jaeger L, Westhof E, Leontis NB (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jahn K, Tørring T, Voigt NV et al (2011) Functional patterning of DNA origami by parallel enzymatic modification. Bioconjug Chem 22:819–823

    PubMed  CAS  Google Scholar 

  • Jiang Q, Song C, Nangreave J et al (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403

    PubMed  CAS  Google Scholar 

  • Karkare S, Bhatnagar D (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71:575–586

    PubMed  CAS  Google Scholar 

  • Ke Y, Sharma J, Liu M et al (2009) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9:2445–2447

    PubMed  CAS  Google Scholar 

  • Ke Y, Ong LL, Shih WM et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    PubMed  CAS  Google Scholar 

  • Khaled A, Guo S, Li F et al (2005) Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 5:1797–1808

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim K-R, Kim D-R, Lee T et al (2013) Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun (Camb) 5:3–5

    Google Scholar 

  • King NP, Sheffler W, Sawaya MR et al (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174

    PubMed  CAS  Google Scholar 

  • Ko S, Liu H, Chen Y et al (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ko SH, Su M, Zhang C et al (2010) Synergistic self-assembly of RNA and DNA molecules. Nat Chem 2:1050–1055

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koga N, Tatsumi-Koga R, Liu G et al (2012) Principles for designing ideal protein structures. Nature 491:222–227

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krishnan Y, Bathe M (2012) Designer nucleic acids to probe and program the cell. Trends Cell Biol 22:624–633

    PubMed  CAS  Google Scholar 

  • Kuzuya A, Komiyama M (2009) Design and construction of a box-shaped 3D-DNA origami. Chem Commun (Camb) 28:4182–4184

    Google Scholar 

  • Lee H, Lytton-Jean AKR, Chen Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liedl T, Högberg B, Tytell J et al (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5:520–524

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Xu Y, Yu T et al (2012) A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett 12:4254–4259

    PubMed  CAS  Google Scholar 

  • Lönnberg H (2009) Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 20:1065–1094

    PubMed  Google Scholar 

  • Low PS, Henne W, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    PubMed  CAS  Google Scholar 

  • Mastroianni AJ, Claridge S, Alivisatos P (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meyer R, Niemeyer CM (2011) Orthogonal protein decoration of DNA nanostructures. Small 7:3211–3218

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    PubMed  CAS  Google Scholar 

  • Nakashima Y, Abe H, Abe N et al (2011) Branched RNA nanostructures for RNA interference. Chem Commun (Camb) 47:8367–8369

    CAS  Google Scholar 

  • Okholm AH, Nielsen JS, Vinther M et al (2014) Quantification of cellular uptake of DNA nanostructures by qPCR. Methods. http://dx.doi.org/10.1016/j.ymeth.2014.01.013

  • Oliveira CLP, Juul S, Jørgensen HL et al (2010) Structure of nanoscale truncated octahedral DNA cages: variation of single-stranded linker regions and influence on assembly yields. ACS Nano 4:1367–1376

    PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    PubMed  CAS  Google Scholar 

  • Pinheiro AV, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rinker S, Ke Y, Liu Y et al (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rossi JJ (2005) RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther 13:583–584

    Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    PubMed  CAS  Google Scholar 

  • Saccà B, Niemeyer CM (2011) Functionalization of DNA nanostructures with proteins. Chem Soc Rev 40:5910–5921

    PubMed  Google Scholar 

  • Said H, Schüller VJ, Eber FJ et al (2013) M1.3–a small scaffold for DNA origami. Nanoscale 5:284–290

    PubMed  CAS  Google Scholar 

  • Schüller VJ, Heidegger S, Sandholzer N et al (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702

    PubMed  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Verzemnieks E et al (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277

    PubMed Central  PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Chworos A et al (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sharma J, Chhabra R, Andersen CS et al (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130:7820–7821

    PubMed  CAS  Google Scholar 

  • Shen W, Zhong H, Neff D et al (2009) NTA directed protein nanopatterning on DNA origami nanoconstructs. J Am Chem Soc 131:6660–6661

    PubMed  CAS  Google Scholar 

  • Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    PubMed  CAS  Google Scholar 

  • Shu D, Huang LP, Hoeprich S et al (2003) Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J Nanosci Nanotechnol 3:295–302

    PubMed  CAS  Google Scholar 

  • Shu D, Shu Y, Haque F et al (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smith D, Schüller V, Engst C et al (2013) Nucleic acid nanostructures for biomedical applications. Nanomedicine 8:105–121

    PubMed  CAS  Google Scholar 

  • Sørensen RS, Okholm AH, Schaffert D et al (2013) Enzymatic ligation of large biomolecules to DNA. ACS Nano 7:1–16

    Google Scholar 

  • Tørring T, Voigt NV, Nangreave J et al (2011) DNA origami: a quantum leap for self-assembly of complex structures. Chem Soc Rev 40:5636–5646

    PubMed Central  PubMed  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G et al (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    PubMed  CAS  Google Scholar 

  • Walsh AS, Yin H, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    PubMed  CAS  Google Scholar 

  • Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    PubMed  CAS  Google Scholar 

  • Westhof E, Masquida B, Jaeger L (1996) RNA tectonics: towards RNA design. Fold Des 1:R78–R88

    PubMed  CAS  Google Scholar 

  • Williams BR, Lund K, Liu Y et al (2007) Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew Chem Int Ed Engl 46:3051–3054

    PubMed  CAS  Google Scholar 

  • Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112:2528–2556

    PubMed  CAS  Google Scholar 

  • Wilner O, Weizmann Y, Gill R (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254

    PubMed  CAS  Google Scholar 

  • Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yan H, Park SH, Finkelstein G et al (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    PubMed  CAS  Google Scholar 

  • Yang Y, Han D, Nangreave J et al (2012) DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 6:8209–8215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yingling YG, Shapiro B (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334

    PubMed  CAS  Google Scholar 

  • Zadegan RM, Jepsen MDE, Thomsen KE et al (2012) Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6:10050–10053

    PubMed  CAS  Google Scholar 

  • Zhang Y, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116:1661–1669

    CAS  Google Scholar 

  • Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    PubMed  CAS  Google Scholar 

  • Zhang HM, Su Y, Guo S et al (2009) Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res 83:307–316

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Chao J, Pan D et al (2012) Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem Commun (Camb) 48:6405–6407

    CAS  Google Scholar 

  • Zhao Z, Liu Y, Yan H (2011) Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett 11:2997–3002

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao Y-X, Shaw A, Zeng X et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Hauge Okholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okholm, A.H., Schaffert, D., Kjems, J. (2014). Towards Defined DNA and RNA Delivery Vehicles Using Nucleic Acid Nanotechnology. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_18

Download citation

Publish with us

Policies and ethics