Advertisement

Biased Predecessor Search

  • Prosenjit Bose
  • Rolf Fagerberg
  • John Howat
  • Pat Morin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8392)

Abstract

We consider the problem of performing predecessor searches in a bounded universe while achieving query times that depend on the distribution of queries. We obtain several data structures with various properties: in particular, we give data structures that achieve expected query times logarithmic in the entropy of the distribution of queries but with space bounded in terms of universe size, as well as data structures that use only linear space but with query times that are higher (but still sublinear) functions of the entropy. For these structures, the distribution is assumed known. We also consider data structures with general weights on universe elements, as well as the case when the distribution is not known in advance.

Keywords

Hash Table Query Time Binary Search Tree Information Processing Letter Universe Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. Journal of the ACM 54(3), Article 13 (2007)Google Scholar
  2. 2.
    Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–96 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Belazzougui, D., Kaporis, A.C., Spirakis, P.G.: Random input helps searching predecessors. arXiv:1104.4353 (2011)Google Scholar
  5. 5.
    Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on Computing 14(3), 545–568 (1985)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space overhead. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 110–118. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bose, P., Douïeb, K., Dujmović, V., Howat, J., Morin, P.: Fast local searches and updates in bounded universes. In: Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010), pp. 261–264 (2010)Google Scholar
  8. 8.
    Brodal, G.S., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Johnson, D.B.: A priority queue in which initialization and queue operations take O(log log D) time. Theory of Computing Systems 15(1), 295–309 (1981)CrossRefGoogle Scholar
  10. 10.
    Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)CrossRefMATHGoogle Scholar
  12. 12.
    Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295 (1975)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O (log log N) time and O(n) space. Information Processing Letters 35(4), 183–189 (1990)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 232–240 (2006)Google Scholar
  15. 15.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6(3), 80–82 (1977)CrossRefMATHGoogle Scholar
  17. 17.
    Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(N). Information Processing Letters 17(2), 81–84 (1983)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Rolf Fagerberg
    • 2
  • John Howat
    • 3
  • Pat Morin
    • 1
  1. 1.School of Computer ScienceCarleton UniversityCanada
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkDenmark
  3. 3.School of ComputingQueen’s UniversityCanada

Personalised recommendations