Skip to main content

Budget Feasible Mechanisms for Experimental Design

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant (≈ 12.98) factor approximation for the Experimental Design Problem (EDP). By applying previous work on budget feasible mechanisms with a submodular objective, one could only have derived either an exponential time deterministic mechanism or a randomized polynomial time mechanism. We also establish that no truthful, budget-feasible mechanism is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. Internet Mathematics 1(2), 129–150 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atkinson, A., Donev, A., Tobias, R.: Optimum experimental designs, with SAS. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  4. Badanidiyuru, A., Kleinberg, R., Singer, Y.: Learning on a budget: posted price mechanisms for online procurement. In: EC (2012)

    Google Scholar 

  5. Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from prior-free to bayesian. In: STOC (2012)

    Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  7. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: ACM STOC (2005)

    Google Scholar 

  8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical Science, 273–304 (1995)

    Google Scholar 

  10. Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: SODA (2011)

    Google Scholar 

  11. Dobzinski, S., Papadimitriou, C.H., Singer, Y.: Mechanisms for complement-free procurement. In: ACM EC (2011)

    Google Scholar 

  12. Dughmi, S.: A truthful randomized mechanism for combinatorial public projects via convex optimization. In: EC (2011)

    Google Scholar 

  13. Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized mechanisms: toward optimal combinatorial auctions. In: STOC (2011)

    Google Scholar 

  14. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer Series in Statistics, vol. 1 (2001)

    Google Scholar 

  15. Ginebra, J.: On the measure of the information in a statistical experiment. Bayesian Analysis 2(1), 167–211 (2007)

    Article  MathSciNet  Google Scholar 

  16. Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for experimental design (2013), http://arxiv.org/abs/1302.5724

  17. Kearns, M., Pai, M.M., Roth, A., Ullman, J.: Private equilibrium release, large games, and no-regret learning (2012), http://arxiv.org/abs/1207.4084v1

  18. Krause, A., Guestrin, C.: A note on the budgeted maximization of submodular functions. Tech. Rep. CMU-CALD-05-103, CMU (2005)

    Google Scholar 

  19. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. Journal of the ACM 58(6), 25 (2011)

    Article  MathSciNet  Google Scholar 

  20. Le Cam, L.: Comparison of experiments: a short review. Lecture Notes-Monograph Series, pp. 127–138 (1996)

    Google Scholar 

  21. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS (2007)

    Google Scholar 

  22. Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1), 58–73 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism design via differential privacy. In: ITCS (2012)

    Google Scholar 

  24. Pai, M., Roth, A.: Privacy and mechanism design. SIGecom Exchanges (2013)

    Google Scholar 

  25. Pukelsheim, F.: Optimal design of experiments. Society for Industrial Mathematics, vol. 50 (2006)

    Google Scholar 

  26. Singer, Y.: Budget feasible mechanisms. In: FOCS (2010)

    Google Scholar 

  27. Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: WSDM (2012)

    Google Scholar 

  28. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vandenberghe, L., Boyd, S., Wu, S.: Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2), 499–533 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vondrak, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: ACM STOC (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horel, T., Ioannidis, S., Muthukrishnan, S. (2014). Budget Feasible Mechanisms for Experimental Design. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics