Skip to main content

The Online Connected Facility Location Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8392)

Abstract

In this paper we propose the Online Connected Facility Location problem (OCFL), which is an online version of the Connected Facility Location problem (CFL). The CFL is a combination of the Uncapacitated Facility Location problem (FL) and the Steiner Tree problem (ST). We give a randomized O(log2 n)-competitive algorithm for the OCFL via the sample-and-augment framework of Gupta, Kumar, Pál, and Roughgarden and previous algorithms for Online Facility Location (OFL) and Online Steiner Tree (OST). Also, we show that the same algorithm is a deterministic O(logn)-competitive algorithm for the special case of the OCFL with M = 1, where M is a scale factor for the edge costs.

Keywords

  • Online Algorithms
  • Competitive Analysis
  • Connected Facility Location
  • Steiner Tree
  • Approximation Algorithms
  • Randomized Algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-54423-1_50
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-54423-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shmoys, D.B.: Approximation algorithms for facility location problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–32. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  2. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM Journal on Computing 36, 411–432 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric facility location problem. SIAM Journal on Computing 39, 2212–2231 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and Computation 222, 45–58 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Press Syndicate of the University of Cambridge (1998)

    Google Scholar 

  6. Meyerson, A.: Online facility location. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 426–431 (2001)

    Google Scholar 

  7. Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50, 1–57 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. Journal of Discrete Algorithms 5(1), 141–148 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 303–315. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Fotakis, D.: Online and incremental algorithms for facility location. SIGACT News 42(1), 97–131 (2011)

    CrossRef  Google Scholar 

  11. Vazirani, V.: Approximation Algorithms. Springer (2003)

    Google Scholar 

  12. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2011)

    Google Scholar 

  13. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Discrete Mathematics 4(3), 369–384 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science 3, 93–263 (2009)

    CrossRef  MathSciNet  Google Scholar 

  15. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: Simpler and better approximation algorithms for network design. Journal of the ACM 54(3), Article 11 (2007)

    Google Scholar 

  16. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50, 98–119 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Hasan, M.K., Jung, H., Chwa, K.Y.: Approximation algorithms for connected facility location. Journal of Combinatorial Optimization 16, 155–172 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Jung, H., Hasan, M.K., Chwa, K.Y.: A 6.55 factor primal-dual approximation algorithm for the connected facility location problem. Journal of Combinatorial Optimization 18, 258–271 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. Journal of Computer and System Sciences 76(8), 709–726 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

San Felice, M.C., Williamson, D.P., Lee, O. (2014). The Online Connected Facility Location Problem. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)