Advertisement

Model fragment comparison using natural language processing techniques

  • Karagiannis Dimitris
  • Buchmann Robert Andrei
Chapter
Part of the Business Engineering book series (BE)

Abstract

The goal of this paper is to set a common working ground for computational linguistics and the metamodelling paradigm, by integrating notions of high abstraction from both fields and thus mediating the possibility of repurposing techniques from one field to the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. 1.
    Levenshtein, I. V.: Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848 (1965).Google Scholar
  2. 2.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18:1245–1262 (1989).CrossRefGoogle Scholar
  3. 3.
    Winkler, W.: The State of Record Linkage and Current Research Problems. Statistics of Income Division, Internal Revenue Service Publication R99/04 (1999).Google Scholar
  4. 4.
    Brown, P.F., deSouza, P.V., Mercer, R.L., Della Pietra, V.J., Lai, J.C.: Class-based n-gram Models of Natural Language. J. Computational Linguistics. 18(4): 467–479 (1992).Google Scholar
  5. 5.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Process compliance measurement based on behavioral profiles. In: Pernici, B. (ed.), CAISE 2010, LNCS 6051, 499–514, 2010, Springer (2010).Google Scholar
  6. 6.
    Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real behaviour. Information Systems 33(1): 64–95 (2008).CrossRefGoogle Scholar
  7. 7.
    de Medeiros, A., van der Aalst, W., Weijters, A.: Quantifying process equivalence based on observed behavior. Data Knowledge Engineering 64(1), 55–74 (2008).CrossRefGoogle Scholar
  8. 8.
    Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on high-level change operations. In Li, Q., Spaccapietra, S., Yu, E., Olive, A. (eds.) ER 2008, LNCS, vol. 5231, p. 248–264, Springer, Heidelberg (2008).Google Scholar
  9. 9.
    Dongen, B., Dijkman, R.M., Mendling, J.: Measuring similarity between business process models. In: Bellahsene, Z., Leonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.450–464. Springer, Heidelberg (2008).Google Scholar
  10. 10.
    Serva, M., Petroni, F.: Indo-European languages tree by Levenshtein distance. Europhysics Letters 81 68005 (2008).Google Scholar
  11. 11.
    Schulz, K., Mihov, S.: Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition, 5(1): 67–85 (2002).CrossRefGoogle Scholar
  12. 12.
    Wojnar, A., Mlynkova, I., Dokulil, J.: Similarity of DTDs based on edit distance and semantics. In: Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D. (eds.), Intelligent Distributed Computing, Systems and Applications, 207-216, Springer (2008).Google Scholar
  13. 13.
    Mikhaiel, R., Lin, G., Stroulia, E.: Simplicity in RNA secondary structure alignment: towards biologically plausible alignments. In: Sixth IEEE Symposium on Bioinformatics and Bioengineering. pp. 149-158 (2006).Google Scholar
  14. 14.
    Kouylekov, M., Magnini, B.: Recognizing textual entailment with tree edit distance algorithms. In: The PASCAL Recognising Textual Entailment Challenge RTE-1, 2005.Google Scholar
  15. 15.
    Karagiannis, D., Kuhn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A., Quirchmayr, G. (eds.), E-commerce and Web technologies, LNCS 2455, pp.451–464, Springer, Berlin (2002).Google Scholar
  16. 16.
    Ehrig, M. Ontology alignment – bridging the semantic gap. Springer (2007).Google Scholar
  17. 17.
  18. 18.
    Gruber, T.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human-Computer Studies 43 (5-6): 907–928 (1995).CrossRefGoogle Scholar
  19. 19.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis: Foundations and Applications, LNAI 3626, Springer-Verlag (2005).Google Scholar
  20. 20.
    ADONIS Community Edition. http://www.adonis-community.com/
  21. 21.
    The Resource Description Framework. http://www.w3.org/RDF/
  22. 22.
    The SPARQL Query Language. http://www.w3.org/TR/sparql11-query/
  23. 23.
  24. 24.
    Zhang Shasha Python implementation. https://github.com/timtadh/zhang-shasha
  25. 25.
    Tai, K.C. The tree-to-tree correction problem. Journal of the Association for Computing Machinery, 26(3): 422–433 (1979).CrossRefGoogle Scholar
  26. 26.
    Chomsky, N. Three models for the description of language. IRE Transactions on Information Theory (2): 113–124 (1956) .Google Scholar
  27. 27.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. EKAW ’02 Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web, pp. 251–263, Springer (2002).Google Scholar
  28. 28.
    Open Models Initiative. http://www.openmodels.at/web/omi/home
  29. 29.
    Damerau, F.J.: A technique for computer detection and correction of spelling errors. Communications of the ACM 7(3): 171-176, ACM New York (1964).Google Scholar
  30. 30.
    Demaine, E.D., Mozes, S., Rossman, B., Weimann, O. An optimal decomposition algorithm for tree edit distance. ACM Trans. on Algorithms 6(1): Article2 (2009).Google Scholar
  31. 31.
    Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In European Symposium on Algorithms (ESA 98), LNCS 1461, pp. 91–102, Springer (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Computer Science, Knowledge Engineering Research GroupUniversity of ViennaViennaAustria

Personalised recommendations