Skip to main content

Representation of Motion Spaces Using Spline Functions and Fourier Series

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

Natural looking human motion are difficult to create and to manipulate because of the high dimensionality of motion data. In the last years, large collections of motion capture data are used to increase the realism in character animation. In order to simplify the generation of motion, we present a mathematical method to create variations in motion data. Given a few samples of motion data of a particular activity, our framework generates a high dimensional continuous motion space. Therewith our motion synthesis framework is able to synthesize motion by varying boundary conditions. Furthermore, we investigate the different properties of spline functions and Fourier series and their suitability for the description of complex human motion. We have derived an optimization heuristic, which is used to automatically generate the initial motion space. We have evaluated our system by comparison against ground-truth motion data and alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruderlin, A., Williams, L.: Motion signal processing. In: Proceedings of the 22nd Annual Conference on Computer Graphics ans Interactive Techniques, pp. 97–104 (1995)

    Google Scholar 

  2. Cox, M.G.: Practical spline approximation. In: Topics in Numerical Analysis. Lecture Notes in Mathematics, vol. 965, pp. 79–112 (1981)

    Google Scholar 

  3. de Boor, C., Rice, J.R.: Least square cubic spline approximation I - fixed knots. Computer Sciences Technical Reports 20 (1986)

    Google Scholar 

  4. de Boor, C., Rice, J.R.: Least square cubic spline approximation, II - variable knots. Computer Science Technical Reports, 149 (1986)

    Google Scholar 

  5. de Boor, C.: A practical guide to splines. Springer, Heidelberg (1978)

    Book  MATH  Google Scholar 

  6. Dierckx, P.: Net aanpassen van krommen en oppervlakken aan meetpunten met behulp van spline funkties. PhD thesis, Katholieke Universiteit Leuven (1979)

    Google Scholar 

  7. Gao, Y., Ma, L., Wu, X., Chen, Z.: From keyframing to motion capture. In: Human Interaction with Machines, pp. 35–42 (2006)

    Google Scholar 

  8. Holt, J.N., Fletcher, R.: An algorithm for constrained non-linear least squares. J. Inst. Math. Appl. 23, 449–463 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu, Y.: An algorithm for data reduction using splines with free knots. IMA J. Numer. Anal. 13, 365–381 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jupp, D.L.B.: The Lethargy theorem - a property of approximation by γ-polynomials. Journal of Approximation Theory 14, 204–217 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jupp, D.L.B.: Approximation to data by splines with free knots. SIAM J. Numer. Anal. 15(2), 328–343 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002)

    Google Scholar 

  13. Lee, K.H., Park, J.P., Lee, J.: Movement classes from human motion data. Transactions on Edutainment VI, 122–131 (2011)

    Google Scholar 

  14. Lyche, T., Mørken, K.: A data reduction strategy for splines with application to the approximation of function and data. IMA J. Numer. Anal. 8, 185–208 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mühlstedt, J., Kaußler, H., Spanner-Ulmer, B.: Programme in Menschengestalt: Digitale Menschmodelle für CAx- und PLM-Systeme. Zeitschrift für Arbeitswissenschaft 02/2008

    Google Scholar 

  16. Spanner-Ulmer, B., Mühlstedt, J.: Digitale Menschmodelle als Werkzeuge virtueller Ergonomie. Industrie Management 26, 69–72 (2010)

    Google Scholar 

  17. Park, J.P., Lee, K.H., Lee, J.: Finding Syntactic Structures from Human Motion Data. Computer Graphics Forum 30(8), 2183–2193 (2011)

    Article  Google Scholar 

  18. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)

    Article  Google Scholar 

  19. Schoenberg, I.J., Whitney, A.: On Polya frequency functions III. Trans. AMS 74, 246–259 (1953)

    MATH  MathSciNet  Google Scholar 

  20. Schütze, T.: Diskrete Quadratmittenapproximation durch Splines mit freien Knoten. Ph.D. thesis, Dresden (1998)

    Google Scholar 

  21. Schwetlick, H., Schütze, T.: Least squares approximation by splines with free knots. BIT 35(3), 361–384 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Suchomski, P.: Method for optimal variable-knot spline interpolation in the L 2 discrete norm. Internat. J. Systems Sci. 22, 2263–2274 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier Principles for Emotion-based Human Figure Animation. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–96 (1995)

    Google Scholar 

  24. van Welbergen, H., van Basten, B.J.H., Egges, A., Ruttkay, Z.M., Overmars, M.H.: Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control. Computer Graphics Forum 29(8), 2530–2554 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kronfeld, T., Fankhänel, J., Brunnett, G. (2014). Representation of Motion Spaces Using Spline Functions and Fourier Series. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics