Skip to main content

Animal Models

  • Chapter
  • First Online:
Filaggrin

Abstract

The roles of human filaggrin in health and disease have been modeled with experimental animal models, mostly mice. Mouse models have provided important information relevant to the roles of filaggrin, but it must always be considered that mice are not humans and that the role of filaggrin in skin pathology and/or physiology still remains unclear. Most altered expression levels or pattern of filaggrin could appear as a result of abnormal keratinization and may not be substantial. In this chapter, various mutant mice and other animal models for filaggrin research are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinert PM, Cantieri JS, Teller DC, Lonsdale-Eccles JD, Dale BA. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981;78(7):4097–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lynley AM, Dale BA. The characterization of human epidermal filaggrin. A histidine-rich, keratin filament-aggregating protein. Biochim Biophys Acta. 1983;744(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  3. Fisher C, Haydock PV, Dale BA. Localization of pro-filaggrin mRNA in newborn rat skin by in situ hybridization. J Invest Dermatol. 1987;88(5):661–4.

    Article  CAS  PubMed  Google Scholar 

  4. Rothnagel JA, Mehrel T, Idler WW, Roop DR, Steinert PM. The gene for mouse epidermal filaggrin precursor. Its partial characterization, expression, and sequence of a repeating filaggrin unit. J Biol Chem. 1987;262(32):15643–8.

    CAS  PubMed  Google Scholar 

  5. Richards S, Scott IR, Harding CR, Liddell JE, Powell GM, Curtis CG. Evidence for filaggrin as a component of the cell envelope of the newborn rat. Biochem J. 1988;253(1):153–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Rothnagel JA, Steinert PM. The structure of the gene for mouse filaggrin and a comparison of the repeating units. J Biol Chem. 1990;265(4):1862–5.

    CAS  PubMed  Google Scholar 

  7. McKinley-Grant LJ, Idler WW, Bernstein IA, Parry DA, Cannizzaro L, Croce CM, et al. Characterization of a cDNA clone encoding human filaggrin and localization of the gene to chromosome region 1q21. Proc Natl Acad Sci U S A. 1989;86(13):4848–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang D, Karunaratne S, Kessler M, Mahony D, Rothnagel JA. Characterization of mouse pro-filaggrin: evidence for nuclear engulfment and translocation of the pro-filaggrin B-domain during epidermal differentiation. J Invest Dermatol. 2002;119(4):905–12.

    Article  CAS  PubMed  Google Scholar 

  9. Pearton DJ, Dale BA, Presland RB. Functional analysis of the pro-filaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol. 2002;119(3):661–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lane PW. Two new mutations in linkage group XVI of the house mouse. Flaky tail and varitint-waddler-J. J Hered. 1972;63:135–40.

    CAS  PubMed  Google Scholar 

  11. Presland RB, Boggess D, Lewis SP, Hull C, Fleckman P, Sundberg JP. Loss of normal pro-filaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J Invest Dermatol. 2000;115(6):1072–81.

    Article  CAS  PubMed  Google Scholar 

  12. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41(5):602–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Moniaga CS, Egawa G, Kawasaki H, Hara-Chikuma M, Honda T, Tanizaki H, et al. Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract. Am J Pathol. 2010;176(5):2385–93.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nakai K, Yoneda K, Hosokawa Y, Moriue T, Presland RB, Fallon PG, et al. Reduced expression of epidermal growth factor receptor, E-cadherin, and occludin in the skin of flaky tail mice is due to filaggrin and loricrin deficiencies. Am J Pathol. 2012;181(3):969–77.

    Article  CAS  PubMed  Google Scholar 

  15. Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46 e6.

    Article  CAS  PubMed  Google Scholar 

  16. Holbrook KA, Dale BA, Brown KS. Abnormal epidermal keratinization in the repeated epilation mutant mouse. J Cell Biol. 1982;92(2):387–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fisher C, Dale BA, Kollar EJ. Abnormal keratinization in the pupoid fetus (pf/pf) mutant mouse epidermis. Dev Biol. 1984;102(2):290–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mamrack MD, Klein-Szanto AJ, Reiners Jr JJ, Slaga TJ. Alteration in the distribution of the epidermal protein filaggrin during two-stage chemical carcinogenesis in the SENCAR mouse skin. Cancer Res. 1984;44(6):2634–41.

    CAS  PubMed  Google Scholar 

  19. Morita K, Hogan ME, Nanney LB, King Jr LE, Manabe M, Sun TT, et al. Cutaneous ultrastructural features of the flaky skin (fsn) mouse mutation. J Dermatol. 1995;22(6):385–95.

    CAS  PubMed  Google Scholar 

  20. Hara-Chikuma M, Takeda J, Tarutani M, Uchida Y, Holleran WM, Endo Y, et al. Epidermal-specific defect of GPI anchor in Pig-a null mice results in Harlequin ichthyosis-like features. J Invest Dermatol. 2004;123(3):464–9.

    Article  CAS  PubMed  Google Scholar 

  21. Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, et al. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell. 2004;15(10):4597–608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mao-Qiang M, Fowler AJ, Schmuth M, Lau P, Chang S, Brown BE, et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  23. Bikle DD, Chang S, Crumrine D, Elalieh H, Man MQ, Dardenne O, et al. Mice lacking 25OHD 1alpha-hydroxylase demonstrate decreased epidermal differentiation and barrier function. J Steroid Biochem Mol Biol. 2004;89–90(1–5):347–53.

    Article  PubMed  Google Scholar 

  24. Pietila M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppanen S, Keinanen T, et al. Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte cultures as a result of spermidine/spermine N-acetyltransferase overexpression. J Invest Dermatol. 2005;124(3):596–601.

    Article  PubMed  Google Scholar 

  25. Mecklenburg L, Paus R, Halata Z, Bechtold LS, Fleckman P, Sundberg JP. FOXN1 is critical for onycholemmal terminal differentiation in nude (Foxn1) mice. J Invest Dermatol. 2004;123(6):1001–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, Fallon PG, et al. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet. 2005;14(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  27. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, et al. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol. 2005;170(3):487–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Troy TC, Rahbar R, Arabzadeh A, Cheung RM, Turksen K. Delayed epidermal permeability barrier formation and hair follicle aberrations in Inv-Cldn6 mice. Mech Dev. 2005;122(6):805–19.

    Article  CAS  PubMed  Google Scholar 

  29. Mirza R, Hayasaka S, Takagishi Y, Kambe F, Ohmori S, Maki K, et al. DHCR24 gene knockout mice demonstrate lethal dermopathy with differentiation and maturation defects in the epidermis. J Invest Dermatol. 2006;126(3):638–47.

    Article  CAS  PubMed  Google Scholar 

  30. Geng S, Mezentsev A, Kalachikov S, Raith K, Roop DR, Panteleyev AA. Targeted ablation of Arnt in mouse epidermis results in profound defects in desquamation and epidermal barrier function. J Cell Sci. 2006;119(Pt 23):4901–12.

    Article  CAS  PubMed  Google Scholar 

  31. Epp N, Furstenberger G, Muller K, de Juanes S, Leitges M, Hausser I, et al. 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol. 2007;177(1):173–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol. 2007;9(6):666–74.

    Article  CAS  PubMed  Google Scholar 

  33. Man MQ, Barish GD, Schmuth M, Crumrine D, Barak Y, Chang S, et al. Deficiency of PPARbeta/delta in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. J Invest Dermatol. 2008;128(2):370–7.

    CAS  PubMed  Google Scholar 

  34. Bayo P, Sanchis A, Bravo A, Cascallana JL, Buder K, Tuckermann J, et al. Glucocorticoid receptor is required for skin barrier competence. Endocrinology. 2008;149(3):1377–88.

    Article  CAS  PubMed  Google Scholar 

  35. Guttormsen J, Koster MI, Stevens JR, Roop DR, Williams T, Winger QA. Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice. Dev Biol. 2008;317(1):187–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nagaike K, Kawaguchi M, Takeda N, Fukushima T, Sawaguchi A, Kohama K, et al. Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice. Am J Pathol. 2008;173(5):1464–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Scharschmidt TC, List K, Grice EA, Szabo R, Renaud G, Lee CC, et al. Matriptase-deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol. 2009;129(10):2435–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest. 2010;120(3):871–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hildenbrand M, Rhiemeier V, Hartenstein B, Lahrmann B, Grabe N, Angel P, et al. Impaired skin regeneration and remodeling after cutaneous injury and chemically induced hyperplasia in taps-transgenic mice. J Invest Dermatol. 2010;130(7):1922–30.

    Article  CAS  PubMed  Google Scholar 

  40. Yanagi T, Akiyama M, Nishihara H, Ishikawa J, Sakai K, Miyamura Y, et al. Self-improvement of keratinocyte differentiation defects during skin maturation in ABCA12-deficient harlequin ichthyosis model mice. Am J Pathol. 2010;177(1):106–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yu X, Espinoza-Lewis RA, Sun C, Lin L, He F, Xiong W, et al. Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease. Cell Tissue Res. 2010;342(3):401–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Roelandt T, Heughebaert C, Bredif S, Giddelo C, Baudouin C, Msika P, et al. Cannabinoid receptors 1 and 2 oppositely regulate epidermal permeability barrier status and differentiation. Exp Dermatol. 2012;21(9):688–93.

    Article  CAS  PubMed  Google Scholar 

  43. Lutzow-Holm C, Heyden A, Huitfeldt HS, Brandtzaeg P, Clausen OP. Differential effects of topical retinoic acid application on keratin K1 and filaggrin expression in mouse epidermis. Differentiation. 1994;57(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  44. Heyden A, Lutzow-Holm C, Clausen OP, Thrane EV, Brandtzaeg P, Roop DR, et al. Application of cantharidin or 12-O-tetradecanoylphorbol-13-acetate on mouse epidermis induces a cell population shift that causes altered keratin distribution. Differentiation. 1994;57(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  45. Hong SP, Kim MJ, Jung MY, Jeon H, Goo J, Ahn SK, et al. Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement. J Invest Dermatol. 2008;128(12):2880–7.

    Article  CAS  PubMed  Google Scholar 

  46. Wollina U, Berger U, Mahrle G. Immunohistochemistry of porcine skin. Acta Histochem. 1991;90(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  47. Scott IR. Alterations in the metabolism of filaggrin in the skin after chemical- and ultraviolet-induced erythema. J Invest Dermatol. 1986;87(4):460–5.

    Article  CAS  PubMed  Google Scholar 

  48. Waikel RL, Wang XJ, Roop DR. Targeted expression of c-Myc in the epidermis alters normal proliferation, differentiation and UV-B induced apoptosis. Oncogene. 1999;18(34):4870–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hanley K, Feingold KR, Komuves LG, Elias PM, Muglia LJ, Majzoub JA, et al. Glucocorticoid deficiency delays stratum corneum maturation in the fetal mouse. J Invest Dermatol. 1998;111(3):440–4.

    Article  CAS  PubMed  Google Scholar 

  50. Marsella R, Girolomoni G. Canine models of atopic dermatitis: a useful tool with untapped potential. J Invest Dermatol. 2009;129(10):2351–7.

    Article  CAS  PubMed  Google Scholar 

  51. Alibardi L, Toni M. Immunolocalization and characterization of cornification proteins in snake epidermis. Anat Rec A Discov Mol Cell Evol Biol. 2005;282(2):138–46.

    Article  PubMed  Google Scholar 

  52. Alibardi L, Toni M. Localization and characterization of specific cornification proteins in avian epidermis. Cells Tissues Organs. 2004;178(4):204–15.

    Article  CAS  PubMed  Google Scholar 

  53. Alibardi L, Toni M. Distribution and characterization of proteins associated with cornification in the epidermis of gecko lizard. Tissue Cell. 2005;37(6):423–33.

    Article  CAS  PubMed  Google Scholar 

  54. Alibardi L, Toni M. Characterization of keratins and associated proteins involved in the cornification of crocodilian epidermis. Tissue Cell. 2007;39(5):311–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Nakai MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakai, K., Yoneda, K., Kubota, Y. (2014). Animal Models. In: Thyssen, J., Maibach, H. (eds) Filaggrin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54379-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54379-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54378-4

  • Online ISBN: 978-3-642-54379-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics