Skip to main content

Therapeutics and Other Interventions

  • Chapter
  • First Online:
Book cover Filaggrin

Abstract

The improved understanding of the filaggrin pathway and the secondary and tertiary consequences of dysfunction on skin barrier homeostasis have revealed several potential targets for future novel treatments. Superior to them all is enhancement or replacement of the missing components pro-filaggrin, filaggrin, and natural moisturizing factors. A large spectrum of cutaneous and non-cutaneous diseases is associated with the filaggrin gene (FLG) mutations, which hold potential for wide applicability for any new drug targeting filaggrin or other parts of the filaggrin cascade. There are reasons to be optimistic that such drugs can be used both to control disease and also for primary prevention. Non-pharmacological intervention should be directed against minimizing or avoiding exposure to environmental dangers known to deteriorate the skin barrier or cause secondary disease, which may have detrimental effects on already vulnerable skin.

This chapter focuses on targets for future novel treatments, promising new candidate drugs and their relation to the individual components of the filaggrin pathway. A discussion on current available treatments and their ability to restore the skin barrier is also provided as well as the applicability of filaggrin pathway-targeting therapeutics in relation to disease spectrum, primary and secondary intervention, and personalized treatment strategies. Finally, an overview of other important non-pharmacological interventions that form the basis for counseling strategies is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Presland RB, Haydock PV, Fleckman P, Nirunsuksiri W, Dale BA. Characterization of the human epidermal proFLG gene. J Biol Chem. 1992;267:23772–81.

    CAS  PubMed  Google Scholar 

  2. Dale BA, Presland RB, Lewis SP, Underwood RA, Fleckman P. Transient expression of epidermal FLG in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J Invest Dermatol. 1997;108:179–87.

    Article  CAS  PubMed  Google Scholar 

  3. Elias PM, Wakefield JS. Therapeutic implications of a barrier-based pathogenesis of AD. Clin Rev Allergy Immunol. 2011;41(3):282–95.

    Article  CAS  PubMed  Google Scholar 

  4. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004;17:43–8.

    Article  PubMed  Google Scholar 

  5. Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, et al. Knockdown of FLG impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol. 2010;130:2286–94.

    Article  CAS  PubMed  Google Scholar 

  6. Barresi C, Stremnitzer C, Mlitz V, Kezic S, Kammeyer A, Ghannadan M, et al. Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous UCA in photoprotection. J Invest Dermatol. 2011;131:188–94.

    Article  CAS  PubMed  Google Scholar 

  7. Hachem J-P, Man M-Q, Crumrine D, Uchida Y, Brown BE, Rogiers V, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–20.

    Article  CAS  PubMed  Google Scholar 

  8. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in AD: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008;121:1337–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Korting HC, Braun-Falco O. The effect of detergents on skin pH and its consequences. Clin Dermatol. 1996;14:23–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kezic S, O’Regan GM, Lutter R, Jakasa I, Koster ES, Saunders S, et al. FLG loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with AD and in a murine model of FLG deficiency. J Allergy Clin Immunol. 2012;129:1031–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mlitz V, Latreille J, Gardinier S, Jdid R, Drouault Y, Hafnagl P, et al. Impact of FLG mutations on Raman spectra and biophysical properties of the stratum corneum in mild to moderate AD. J Eur Acad Dermatol Venereol. 2012;26:983–90.

    Article  CAS  PubMed  Google Scholar 

  12. Gruber R, Elias PM, Crumrine D, Lin T-K, Brandner JM, Hachem J-P, et al. FLG genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol. 2011;178:2252–63.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Angelova-Fischer I, Mannheimer A-C, Hinder A, Ruether A, Franke A, Neubert RHH, et al. Distinct barrier integrity phenotypes in FLG-related atopic eczema following sequential tape stripping and lipid profiling. Exp Dermatol. 2011;20:351–6.

    Article  PubMed  Google Scholar 

  14. Scharschmidt TC, Man M-Q, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, et al. FLG deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol. 2009;124:496–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes L, Høgh JK, et al. Stratum corneum lipids, skin barrier function and FLG mutations in patients with atopic eczema. Allergy. 2010;65:911–18.

    Article  CAS  PubMed  Google Scholar 

  16. Winge MCG, Hoppe T, Berne B, Vahlquist A, Nordenskjöld M, Bradley M, et al. FLG genotype determines functional and molecular alterations in skin of patients with AD and ichthyosis vulgaris. PLoS ONE. 2011;6:e28254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sergeant A, Campbell LE, Hull PR, Porter M, Palmer CNA, Smith FJD, et al. Heterozygous null alleles in FLG contribute to clinical dry skin in young adults and the elderly. J Invest Dermatol. 2009;129:1042–5.

    Article  CAS  PubMed  Google Scholar 

  18. Oyoshi MK, Murphy GF, Geha RS. FLG-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124:485–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jensen J-M, Pfeiffer S, Witt M, Bräutigam M, Neumann C, Weichenthal M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with AD. J Allergy Clin Immunol. 2009;123:1124–33.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen J-M, Scherer A, Wanke C, Bräutigam M, Bongiovanni S, Letzkus M, et al. Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of AD. Allergy. 2011;67:413–23.

    Article  PubMed  Google Scholar 

  21. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, et al. Cytokine modulation of AD FLG skin expression. J Allergy Clin Immunol. 2007;120:150–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Margolis DJ, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Campbell LE, et al. The persistence of AD and FLG (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kao JS, Fluhr JW, Man M-Q, Fowler AJ, Hachem J-P, Crumrine D, et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol. 2003;120:456–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kim M, Jung M, Hong S-P, Jeon H, Kim M-J, Cho M-Y, et al. Topical calcineurin inhibitors compromise stratum corneum integrity, epidermal permeability and antimicrobial barrier function. Exp Dermatol. 2009;19:501–10.

    Article  PubMed  Google Scholar 

  25. Lee SE, Choi Y, Kim S-E, Noh EB, Kim S-C. Differential effects of topical corticosteroid and calcineurin inhibitor on the epidermal tight junction. Exp Dermatol. 2013;22:54–80.

    Article  Google Scholar 

  26. Gånemo A, Virtanen M, Vahlquist A. Improved topical treatment of lamellar ichthyosis: a double-blind study of four different cream formulations. Br J Dermatol 1999;141:1027–32.

    Google Scholar 

  27. Effendy I, Kwangsukstith C, Lee JY, Maibach HI. Functional changes in human stratum corneum induced by topical glycolic acid: comparison with all-trans retinoic acid. Acta Derm Venereol 1995;75: 455–8.

    Google Scholar 

  28. Hoppe T, Winge MCG, Bradley M, Nordenskjöld M, Vahlquist A, Berne B et al. X-linked recessive ichthyosis: an impaired barrier function evokes limited gene responses before and after moisturizing treatments. Br J Dermatol 2012;167:514–22.

    Google Scholar 

  29. Brown SJ, Kroboth K, Sandilands A, Campbell LE, Pohler E, Kezic S, et al. Intragenic copy number variation within FLG contributes to the risk of AD with a dose-dependent effect. J Invest Dermatol. 2012;132:98–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding FLG cause ichthyosis vulgaris. Nat Genet. 2006;38:337–42.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Gurevich I, Aneskievich BJ. Organotypic modeling of human keratinocyte response to peroxisome proliferators. Cells Tissues Organs. 2012;196:431–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schmuth M, Haqq CM, Cairns WJ, Holder JC, Dorsam S, Chang S, et al. Peroxisome proliferator-activated receptor (PPAR)-β/δ stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol. 2004;122:971–83.

    Article  CAS  PubMed  Google Scholar 

  33. Mao-Qiang M, Fowler AJ, Schmuth M, Lau P, Chang S, Brown BE, et al. Peroxisome-proliferator-activated receptor (PPAR)-γ activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123:305–12.

    Article  CAS  PubMed  Google Scholar 

  34. Mao-Chiang M, Choi E-H, Schmuth M, Crumrine D, Uchida Y, Elias PM, et al. Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: liposensors stimulate synthesis, lamellar body secretion, and post-secretory lipid processing. J Invest Dermatol. 2006;126:386–92.

    Article  Google Scholar 

  35. Kim H, Lim YJ, Park JH, Cho Y. Dietary silk protein, sericin, improves epidermal hydration with increased levels of FLGs and free amino acids in NC/Nga mice. Br J Nutr. 2012;108:1726–35.

    Article  CAS  PubMed  Google Scholar 

  36. Hou M, Sun R, Hupe M, Kim PL, Park K, Crumrine D, et al. Topical apigenin improves epidermal permeability barrier homeostasis in normal murine skin by divergent mechanisms. Exp Dermatol. 2013;22:210–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Marzani B, Pinto D, Minervini F, Calasso M, Cagno RD, Giuliani G, et al. The antimicrobial peptide pheromone Plantaricin A increases antioxidant defences of human keratinocytes and modulates the expression of FLG, involucrin, β-defensin 2 and tumor necrosis factor-α genes. Exp Dermatol. 2012;21:665–71.

    Article  CAS  PubMed  Google Scholar 

  38. Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, et al. Urea uptake enhances function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol. 2012;132:1561–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chen H, Common JEA, Haines RL, Balakrishnan A, Brown SJ, Goh CSM, et al. Wide spectrum of FLG-null mutations in AD highlights differences between Singaporean Chinese and European populations. Br J Dermatol. 2011;165:106–14.

    Article  CAS  PubMed  Google Scholar 

  40. Mühlemann O, Eberle AB, Stalder L, Zamudio Orozco R. Recognition and elimination of nonsense mRNA. Biochim Biophys Acta. 2008;1779:538–49.

    Article  PubMed  Google Scholar 

  41. Floquet C, Deforges J, Rousset J-P, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 2011;39:3350–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pinotti M, Rizzotto L, Pinton P, Ferraresi P, Chuansumrit A, Charoenkwan P, et al. Intracellular readthrough of nonsense mutations by aminoglycosides in coagulation factor VII. J Thromb Haemost. 2006;4:1308–14.

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 2007;5:5.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kayali R, Ku JM, Khitrov G, Jung ME, Prikhodko O, Bertoni C. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet. 2012;21:4007–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Floquet C, Hatin I, Rousset J-P, Bidou L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 2012;8:e1002608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Weber TM, Kausch M, Rippke F, Schoelermann AM, Filbry AW. Treatment of xerosis with a topical formulation containing glyceryl glucoside, NMFs, and ceramide. J Clin Aesthet Dermatol. 2012;5:29–39.

    PubMed Central  PubMed  Google Scholar 

  48. Sugawara T, Kikuchi K, Tagami H, Aiba S, Sakai S. Decreased lactate and potassium levels in NMF from the stratum corneum of mild AD patients are involved with the reduced hydration state. J Dermatol Sci. 2012;66:154–9.

    Article  CAS  PubMed  Google Scholar 

  49. de Fine Olivarius F, Wulf HC, Crosby J, Norval M. The sunscreening effect of UCA. Photodermatol Photoimmunol Photomed. 1996;12:95–9.

    Article  Google Scholar 

  50. Jansen CT, Pylkkanen L, Laihia J, et al. Improvement of epidermal barrier function and erythema by cis-UCA emulsion cream in adult patients with mild to moderate AD. J Invest Dermatol. 2010;130 Suppl 2:S67.

    Google Scholar 

  51. Mao-Qiang M, Brown BE, Wu S, Feingold KR, Elias PM. Exogenous non-physiological vs. physiological lipids: divergent mechanisms for correction of permeability barrier dysfunction. Arch Dermatol. 1995;131:809–16.

    Article  CAS  PubMed  Google Scholar 

  52. Mao-Qiang M, Feingold KR, Elias PM. Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Arch Dermatol. 1993;129:728–38.

    Article  Google Scholar 

  53. Mao-Qiang M, Feingold KR, Thornfeldt CR, Elias PM. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996;106:1096–101.

    Article  CAS  Google Scholar 

  54. Sugarman JL, Parish LJ. A topical physiologic lipid-based, barrier repair formulation (Epiceram™ cream) is highly-effective monotherapy for moderate-to-severe pediatric AD: a multicenter, investigator-blinded trial comparing a barrier repair formulation, Epiceram™, to fluticasone propionate (Cutivate®) cream. J Invest Dermatol. 2008;128:S54.

    Google Scholar 

  55. Simpson EL, Berry T, Tofte S, Hanifin J, Eichenfield L. Epiceram for the treatment of mild to moderate AD – a pilot study. J Invest Dermatol. 2008;128:S77.

    Google Scholar 

  56. Zettersten EM, Ghadially R, Feingold KR, Crumrine D, Elias PM. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J Am Acad Dermatol. 1997;37:403–8.

    Article  CAS  PubMed  Google Scholar 

  57. Hachem JA, Fowler AJ, Behne M, Fluhr JW, Feingold R, Elias PM. Increased stratum corneum pH promotes activation and release of primary cytokines from the strum corneum attributable to activation of serine proteases. J Invest Dermatol. 2002;119:258.

    Google Scholar 

  58. Hachem J-P, Roelandt T, Schürer N, Pu X, Fluhr J, Giddelo C, et al. Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Invest Dermatol. 2010;130:500–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Buraczewska I, Lodén M. Treatment of surfactant-damaged skin in humans with creams of different pH values. Pharmacology. 2005;73:1–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in AD: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011;131:150–7.

    Article  CAS  PubMed  Google Scholar 

  61. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. Interleukin-22 downregulates FLG expression and affects expression of proFLG processing enzymes. Br J Dermatol. 2011;165:492–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sanofi and Regeneron report positive proof-of-concept data for Dupilumab, an IL-4R alpha antibody, in AD. Press Release March 2nd 2013. http://investor.regeneron.com/releasedetail.cfm?releaseid=744703.

  63. Antoniu SA. Pitrakinra, a dual IL-4/IL-13 antagonist for the potential treatment of asthma and eczema. Curr Opin Investig Drugs. 2010;11:1286–94.

    CAS  PubMed  Google Scholar 

  64. Groves RW, Wilbraham D, Fuller R, Longphre M. Inhibition of IL-4 and IL-13 with an IL-4 mutein (Aeroderm) protects against flares in atopic eczema. J Invest Dermatol. 2007;127:S54.

    Google Scholar 

  65. Sehra S, Yao Y, Howell MD, Nguyen ET, Kansas GS, Leung DYM, et al. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol. 2010;184:3186–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Pazyar N, Felly A, Yaghoobi R. An overview of interleukin-1 receptor antagonist, anakinra, in the treatment of cutaneous diseases. Curr Clin Pharmacol. 2012;7:271–5.

    Article  CAS  PubMed  Google Scholar 

  67. Mazereeuw-Hautier J, Cope J, Ong C, Green A, Hovnanian A, Harper JI. Topical recombinant alpha-1-antitrypsin: a potential treatment for Netherton syndrome? Arch Dermatol. 2006;142:396–8.

    PubMed  Google Scholar 

  68. Hoste E, Kemperman P, Devos M, Denecker G, Kezic S, Yau N, et al. Caspase-14 is required for FLG degradation to NMFs in the skin. J Invest Dermatol. 2011;131:2233–41.

    Article  CAS  PubMed  Google Scholar 

  69. Tan SP, Abdul-Ghaffar S, Weller RB, Brown SB. Protease-antiprotease imbalance may be linked to potential defects in proFLG proteolysis in AD. Br J Dermatol. 2012;166:1137–40.

    Article  CAS  PubMed  Google Scholar 

  70. Palmer CNA, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein FLG are a major predisposing factor for AD. Nat Genet. 2006;38:441–6.

    Article  CAS  PubMed  Google Scholar 

  71. Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta-analysis of FLG polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol. 2009;123:1361–70.

    Article  CAS  PubMed  Google Scholar 

  72. Cai SCS, Chen H, Koh W-P, Common JEA, van Bever HP, McLean WHI, et al. FLG mutations are associated with recurrent skin infection in Singaporean Chinese patients with AD. Br J Dermatol. 2012;166:200–3.

    Article  CAS  PubMed  Google Scholar 

  73. Novak N, Baurecht H, Schäfer T, Rodriguez E, Wagenpfeil S, Klopp N, et al. Loss-of-function mutations in the FLG gene and allergic contact sensitization to nickel. J Invest Dermatol. 2008;128:1430–5.

    Article  CAS  PubMed  Google Scholar 

  74. Gao P-S, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, et al. FLG mutations that confer risk of AD confer greater risk for eczema herpeticum. J Allergy Clin Immunol. 2009;124:507–13.

    Article  CAS  PubMed  Google Scholar 

  75. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, et al. Loss-of-function variants in the FLG gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127:661–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Thyssen JP, Ross-Hansen K, Johansen JD, Zachariae C, Carlsen BC, Linneberg A, et al. FLG loss-of-function mutation R501X and 2282del4 carrier status is associated with fissured skin on the hands: results from a cross-sectional population study. Br J Dermatol. 2012;166:46–53.

    Article  CAS  PubMed  Google Scholar 

  77. De Jongh CM, Khrenova L, Verberk MM, Calkoen F, van Dijk FJ, Voss H, et al. Loss-of-function polymorphisms in the FLG gene are associated with an increased susceptibility to chronic ICD: a case-control study. Br J Dermatol. 2008;159:621–7.

    Article  PubMed  Google Scholar 

  78. Thyssen JP, Carlsen BC, Menné T, Linneberg A, Nielsen NH, Meldgaard M, et al. FLG null mutations increase the risk and persistence of hand eczema in subjects with AD: results from a general population study. Br J Dermatol. 2010;163:115–20.

    CAS  PubMed  Google Scholar 

  79. Visser MJ, Landeck L, Campbell LE, McLean WHI, Weidinger S, Calkoen F, et al. Impact of AD and loss-of-function mutations in the FLG gene on the development of occupational ICD. Br J Dermatol. 2013;168:326–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Thyssen JP, Linneberg A, Ross-Hansen K, Carlsen BC, Meldgaard M, Szecsi PB, et al. FLG mutations are strongly associated with contact sensitization in individuals with dermatitis. Contact Dermatitis. 2013;68(5):273–6.

    Article  CAS  PubMed  Google Scholar 

  81. Sevilla LM, Nachat R, Groot KR, Klement JF, Uitto J, Dijan P, et al. Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J Cell Biol. 2007;179:1599–612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Holleran WM, Ginns EI, Menon GK, Grundmann J-U, Fartasch M, McKinney CE, et al. Consequences of β-glucocerebrosidase deficiency in epidermis. J Clin Invest. 1994;93:1756–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Williams HC. Epidemiology of AD. Clin Exp Dermatol. 2000;25:522–9.

    Article  CAS  PubMed  Google Scholar 

  84. Marenholz I, Nickel R, Rüschendorf F, Schulz F, Esparza-Gordillo J, Kerscher T, et al. FLG loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol. 2006;118:866–71.

    Article  CAS  PubMed  Google Scholar 

  85. Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, et al. Comprehensive analysis of the gene encoding FLG uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007;39:650–4.

    Article  CAS  PubMed  Google Scholar 

  86. Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol. 2009;129:866–71.

    Google Scholar 

  87. Flohr C, England K, Radulovic S, McLean WHI, Campbell LE, Barker J, et al. FLG loss-of-function mutations are associated with early-onset eczema, eczema severity and TEWL at 3 months of age. Br J Dermatol. 2010;163:1333–6.

    Article  CAS  PubMed  Google Scholar 

  88. Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of AD. J Am Acad Dermatol. 2010;63:587–93.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Soll RF, Edwards WH. Topical ointment for preventing infection in preterm infants. Cochrane Database Syst Rev. 2000;2, CD001150.

    PubMed  Google Scholar 

  90. Lowe AJ, Tang MLK, Dharmage SC, Varigos G, Forster D, Gurrin LC, et al. A phase I study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates. BMC Dermatol. 2012;12:3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Ying S, Meng Q, Corrigan CJ, Lee TH. Lack of FLG expression in the human bronchial mucosa. J Allergy Clin Immunol. 2006;118:1386–8.

    Article  CAS  PubMed  Google Scholar 

  92. De Benedetto A, Qualia CM, Baroody FM, Beck LA. FLG expression in oral, nasal and esophageal mucosa. J Invest Dermatol. 2008;128:1594–7.

    Article  PubMed  Google Scholar 

  93. Lack G, Fox D, Northstone K, Golding J. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348:977–85.

    Article  PubMed  Google Scholar 

  94. Fox AT, Sasieni P, Toit GD, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009;123:417–23.

    Article  CAS  PubMed  Google Scholar 

  95. Visscher MO, Tolia GT, Wickett RR, Hoath SB. Effect of soaking and NMF on stratum corneum water-handling properties. J Cosmet Sci. 2003;54:289–300.

    CAS  PubMed  Google Scholar 

  96. Choi E-H, Brown BE, Crumrine D, Chang S, Man M-Q, Elias PM, et al. Mechanisms by which psychologic stress alters cutaneous permeability barrier homeostasis and stratum corneum integrity. J Invest Dermatol. 2005;124:587–95.

    Article  CAS  PubMed  Google Scholar 

  97. Jeong SK, Kim HJ, Youm J-K, Ahn SK, Choi EH, Sohn MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol. 2008;128:1930–9.

    Article  CAS  PubMed  Google Scholar 

  98. Scott IR, Harding CR. FLG breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev Biol. 1986;115:84–92.

    Article  CAS  PubMed  Google Scholar 

  99. Jensen AO, Svaerke C, Kormendine FD, et al. AD and risk of skin cancer: a Danish nationwide cohort study (1977–2006). Am J Clin Dermatol. 2012;13:29–36.

    Article  PubMed  Google Scholar 

  100. Bisgaard H, Simpson A, Palmer CNA, Bønnelykke K, McLean I, Mukhopadhyay S, et al. Gene-environment interaction in the onset of eczema in infancy: FLG loss-of-function mutations enhanced by neonatal cat exposure. PLoS One. 2008;5:e131.

    Google Scholar 

  101. Berg ND, Husemoen LLN, Thuesen BH, Hersoug L-G, Elberling J, Thyssen JP, et al. Interaction between FLG null mutations and tobacco smoking in relation to asthma. J Allergy Clin Immunol. 2012;129:374–80.

    Article  CAS  PubMed  Google Scholar 

  102. Marenholz I, Kerscher T, Bauerfeind A, Esparza-Gordillo J, Nickel R, Keil T, et al. An interaction between FLG mutations and early food sensitization improves the prediction of childhood asthma. J Allergy Clin Immunol. 2009;123:911–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berit Christina Carlsen MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlsen, B.C. (2014). Therapeutics and Other Interventions. In: Thyssen, J., Maibach, H. (eds) Filaggrin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54379-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54379-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54378-4

  • Online ISBN: 978-3-642-54379-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics