Filaggrin pp 327-331 | Cite as

Filaggrin Dysfunction and Its Association with Inflammatory Conditions of the GI Tract

Chapter

Abstract

An intact gastrointestinal barrier is essential to host homeostasis, with its dysfunction leading to excess inflammation. One particular gene and protein, filaggrin, seems to play a particularly important role in maintaining the integrity of the epithelial barrier of the gastrointestinal tract. We present data to support the hypotheses that alteration in normal filaggrin expression leads to various gastrointestinal pathologies, including inflammatory bowel disease and eosinophilic esophagitis.

Keywords

Permeability Europe Esophagitis Glean 

References

  1. 1.
    Loftus Jr EV, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am. 2002;31(1):1–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Waye JD. The role of colonoscopy in the differential diagnosis of inflammatory bowel disease. Gastrointest Endosc. 1977;23(3):150–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz DA, Loftus EV, Tremaine WJ, Panaccione R, Harmsen WS, Zinsmeister AR, et al. The natural history of fistulizing Crohn’s disease in Olmsted County, Minnesota. Gastroenterology. 2002;122(4):875–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol. 2006;169(6):1901–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134(5):743–56.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Habtezion A, Toivola DM, Butcher EC, Omary MB. Keratin-8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci. 2005;118(Pt 9):1971–80.PubMedCrossRefGoogle Scholar
  8. 8.
    de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41(2):211–15.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    De Benedetto A, Qualia CM, Baroody FM, Beck LA. Filaggrin expression in oral, nasal, and esophageal mucosa. J Invest Dermatol. 2008;128(6):1594–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Available from: The human protein atlas. Web site: http://www.proteinatlas.org/ENSG00000143631/normal. Cited 1 Apr 2013.
  11. 11.
    Available from: neXtProt. Web site: http://www.nextprot.org/db/entry/NX_P20930/expression. Cited 1 Apr 2013.
  12. 12.
    Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36(5):476–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruether A, Stoll M, Schwarz T, Schreiber S, Fölster-Holst R. Filaggrin loss-of-function variant contributes to atopic dermatitis risk in the population of Northern Germany. Br J Dermatol. 2006;155(5):1093–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Limbergen J, Russell RK, Nimmo ER, Zhao Y, Liao H, Drummond HE, et al. Filaggrin loss-of-function variants are associated with atopic comorbidity in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(10):1492–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Yuki T, Komiya A, Kusaka A, Kuze T, Sugiyama Y, Inoue S. Impaired tight junctions obstruct stratum corneum formation by altering polar lipid and profilaggrin processing. J Dermatol Sci. 2013;69(2):148–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Sugawara T, Iwamoto N, Akashi M, Kojima T, Hisatsune J, Sugai M, et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci. 2013;70(1):12–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Winter HS, Madara JL, Stafford RJ, Grand RJ, Quinlan JE, Goldman H. Intraepithelial eosinophils: a new diagnostic criterion for reflux esophagitis. Gastroenterology. 1982;83(4):818–23.PubMedGoogle Scholar
  18. 18.
    Liacouras CA, Furuta GT, Hirano I, Atkins D, Attwood SE, Bonis PA, et al. Eosinophilic esophagitis: updated consensus recommendations for children and adults. J Allergy Clin Immunol. 2011;128(1):3–20.e6; quiz 1–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Sgouros SN, Bergele C, Mantides A. Eosinophilic esophagitis in adults: a systematic review. Eur J Gastroenterol Hepatol. 2006;18(2):211–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Straumann A, Spichtin HP, Grize L, Bucher KA, Beglinger C, Simon HU. Natural history of primary eosinophilic esophagitis: a follow-up of 30 adult patients for up to 11.5 years. Gastroenterology. 2003;125(6):1660–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Blanchard C, Stucke EM, Burwinkel K, Caldwell JM, Collins MH, Ahrens A, et al. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 2010;184(7):4033–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Matoso A, Mukkada VA, Lu S, Monahan R, Cleveland K, Noble L, et al. Expression microarray analysis identifies novel epithelial-derived protein markers in eosinophilic esophagitis. Mod Pathol. 2013;26(5):665–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Irvine AD, McLean WHI, Leung DYM. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Abreu MT. Toll-like receptor signaling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Internal Medicine/PediatricsMaine Medical CenterPortlandUSA
  2. 2.Specialists in GastroenterologySt. LouisUSA

Personalised recommendations