Advertisement

Modelling Population Dynamics Using Grid Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7991)

Abstract

A new formalism, Grid Systems, aimed at modelling population dynamics is presented. The formalism is inspired by concepts of Membrane Computing (P Systems) and spatiality dynamics of Cellular Automata. The semantics of Grid Systems describes how stochasticity is exploited for reaction duration as well as reaction selection. Grid Systems perform reactions in maximally parallel manner, imitating natural processes. Environmental events that change population behaviour can be defined in Grid Systems as rewrite rules.

A population model of a species of mosquitoes, Aedes albopictus, is presented. The model considers three types of external events: temperature change, rainfall, and desiccation. The events change the behaviour of the species directly or indirectly. Each individual in the population can move around in the ecosystem. The simulation of the model was performed by using a semantics based tool.

Keywords

Cellular Automaton West Nile Virus Grid System Transition Rule Mosquito Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported partly by UNU-IIST and partly by Macao Science and Technology Development Fund, File No. 07/2009/A3, in the context of the EAE project. Suryana Setiawan is supported by a PhD scholarship under I-MHERE Project of the Faculty of Computer Science, University of Indonesia (IBRD Loan No. 4789-IND & IDA Credit No. 4077-IND, Ministry of Education and Culture, Republic of Indonesia).

References

  1. 1.
    Rio Declaration on Environment and Development. United Nations Conference on Environment and Development (UNCED), Rio de Janeiro, Brazil (1992)Google Scholar
  2. 2.
    Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London (1994)zbMATHGoogle Scholar
  3. 3.
    Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: The calculus of looping sequences. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 387–423. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Rama, A.: A process calculus for molecular interaction maps. In: Membrane Computing and Biologically Inspired Process Calculi (MeCBIC), pp. 35–49 (2009)Google Scholar
  5. 5.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics and behavioral equivalences for p systems. Theor. Comput. Sci. 395(1), 77–100 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A p systems flat form preserving step-by-step behaviour. Fundam. Inform. 87(1), 1–34 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview on operational semantics in membrane computing. Int. J. Found. Comput. Sci. 22(1), 119–131 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Modelling the dynamics of an aedes albopictus population. In: Proceedings of Application of Membrane Computing, Concurrency and Agent-based Modelling in Population Biology (2010)Google Scholar
  9. 9.
    Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Cardona, M., Colomer, M.A., Perez-Jimenez, M.J., Sanuy, D., Margalida, A.: A P system modeling an ecosystem related to the bearded vulture. In: Proceedings of Sixth Brainstowming Week on Membrane Computing, pp. 52–66 (2008)Google Scholar
  11. 11.
    Chaloupka, M.: Stochastic simulation modelling of southern great barrier reef green turtle population dynamics. Ecol. Model. 148, 79–109 (2001)CrossRefGoogle Scholar
  12. 12.
    Dematté, L., Priami, C., Romanel, A.: The BlenX language: a tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Focks, D.A., Daniels, E., Haile, D.G., Keesling, J.E.: A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am. J. Trop. Med. Hyg. 53, 489–506 (1995)Google Scholar
  14. 14.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)CrossRefGoogle Scholar
  15. 15.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  17. 17.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)CrossRefGoogle Scholar
  18. 18.
    Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic system in molecular biology by using Petri Nets. J. Bioinform. Comput. Biol. 95, 6750–6755 (1990)Google Scholar
  19. 19.
    Hawley, W.A.: The biology of aedes albopictus. J. Am. Mosq. Control Assoc. 4, 1–39 (1988)Google Scholar
  20. 20.
    John, M., Ewald, R., Uhrmacher, A.M.: A spatial extension to the \(\pi \)-calculus. Electron. Notes Theoret. Comput. Sci. 194, 133–148 (2009)CrossRefGoogle Scholar
  21. 21.
    Kahramanoğullari, O., Jordan, F., Lynch, J.: CoSBiLab LIME: a language interface for stochastic dynamical modelling in ecology. Environ. Model Softw. 26, 685–687 (2011)CrossRefGoogle Scholar
  22. 22.
    Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecule interaction maps of bioregularity networks: a general rubric for systems biology. Mol. Biol. Cell 17, 1–13 (2005)CrossRefGoogle Scholar
  23. 23.
    Lanotte, R., Tini, S.: Probabilistic bisimulation as a congruence. ACM Trans. Comput. Log. 10(2), 1 (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Li, H., Petzold, L.: Logarithmic Direct Method for Discrete Stochastics Simulation of Chemically Reacting Systems. Technical report, University of California Santa Barbara (2006)Google Scholar
  25. 25.
    Milazzo, P.: Qualitative and quantitative formal modeling of biological systems. Ph.D. thesis, Università di Pisa (2007)Google Scholar
  26. 26.
    Milner, R.: Communication and mobile systems: the \(\pi \)-calculus. In: Proceeding of the Pacific Symposium on Biocomputing, pp. 459–470 (2001)Google Scholar
  27. 27.
    Moreno, D.H.R., Federico, P., Canziani, G.A.: Population dynamics models base on cellular automata that includes habitat quality indices defined through remote sensing. In: ISRSE RM (2001)Google Scholar
  28. 28.
    Pardini, G.: Formal modelling and simulation of biological systems with spatiality. Ph.D. thesis, Università di Pisa (2011)Google Scholar
  29. 29.
    Pineda-Krch, M.: Gillespie SSA: implementing the stochastic simulation algorithm in R. J. Stat. Softw. 25, 1–18 (2008)Google Scholar
  30. 30.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.Y.: Application of a stochastic name-passing calculus to representation and simulation a molecular processes. Inf. Process. Lett. 80, 25–31 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)CrossRefzbMATHGoogle Scholar
  32. 32.
    Păun, G.: Twenty six research topics about spiking neural P systems. In: Proceeding of Sixth Brainstowming Week on Membrane Computing (2008)Google Scholar
  33. 33.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the \(\pi \)-calculus process algebra. In: Proceeding of the Pacific Symposium on Biocomputing, pp. 459–470 (2001)Google Scholar
  34. 34.
    Tini, S.: Non-expansive epsilon-bisimulations for probabilistic processes. Theor. Comput. Sci. 411(22–24), 2202–2222 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.UNU-IIST — International Institute for Software TechnologyUnited Nations UniversityMacau SARChina

Personalised recommendations