Skip to main content

The Role of Pollen in Honeybee Colonies

  • Chapter
  • First Online:
Honeybee Nests

Abstract

The nutrients that workers derive from pollen provide all the proteins, lipids, vitamins, and minerals required for brood-rearing; the primary consumers of pollen are nurse bees which feed the brood. The greatest net increase in nitrogen content of bees is obtained when bees are fed their normal diet based on pollen. The most rapid rates of growth in young workers occur during the first week after eclosion and pollen must be available for the normal development of the wax glands, and subsequently comb construction. Under temperate zone conditions the relative abundance of pollen-rich flowers in spring drives brood-rearing. Likewise, increased access to pollen or protein resources is positively correlated with worker longevity. The amount of pollen required increases proportionately with the quantity of brood. Pollen-fed bees produce more comb than pollen-deprived bees. Pollen foraging seems to be regulated by at least three mechanisms: young larvae, stored pollen, and empty space. The amount of brood is a positive stimulus; while the quantity of stored pollen acts as an inhibitory stimulus for pollen foraging activity. Brood pheromone affects pollen foragers but not nectar-foraging behaviour. Camazine (1991) argued that the pattern of comb contents could be generated by a self-organizing algorithm of three simple rules: (1) the queen lays eggs in the centre of the comb; (2) workers deposit pollen and nectar at random; and (3) bees preferentially remove pollen and nectar from the brood nest relative to the honey storage area. Subsequent theoretical work supports this view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aichholz R, Lorbeer E (1999) Investigation of comb wax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry I. High-temperature gas chromatography. J Chromatogr A 855:601–615

    Article  CAS  PubMed  Google Scholar 

  • Al-Tikrity WS, Benton AW, Hillman RC, Clarke WW (1972) The relationship between the amount of unsealed brood in honeybee colonies and their pollen collection. J Apic Res 11:9–12

    Google Scholar 

  • Barker RL (1971) The influence of food inside the hive on pollen collection by a honeybee colony. J Apic Res 10:23–26

    Google Scholar 

  • Bittermann ME (1988) Vertebrate invertebrate comparison NATO. ASI Ser Vol (G) 17:251–275

    Google Scholar 

  • Bittermann ME (1996) Comparative analysis of learning in honeybees. Anim Learn Behav 24:123–124

    Article  Google Scholar 

  • Boehm B (1965) Beziehungen zwischen Fettkörper, Oenocyten und Wachsdrussenentwicklung bei Apis mellifica L. Z Zellforsch Mikrosk Anat 65:74–115

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneuborg JL, Aron S, Camazine S (1997) Self-organization in social insects. TREE 12:188–193

    CAS  PubMed  Google Scholar 

  • Bujok B, Kleinhenz M, Fuchs S, Tautz J (2002) Hot spots in the hive. Naturwissenschaften 89:299–301

    Article  CAS  PubMed  Google Scholar 

  • Butler CG (1974) The world of the honeybee. Collins, London

    Google Scholar 

  • Calderone NW (1993) Genotypic effects on the response of worker honeybees, Apis mellifera, to the colony environment. Anim Behav 46:403–404

    Article  Google Scholar 

  • Cale GH (1968) Pollen gathering relationship to honey collection and egg laying in honeybees. Am Bee J 108:8–9

    Google Scholar 

  • Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:265–272

    Article  Google Scholar 

  • Camazine S (1993) The regulation of pollen foraging by honeybees: how foragers assess the colony’s need for pollen. Behav Ecol Sociobiol 32:265–272

    Article  Google Scholar 

  • Camazine S, Sneyd J, Jenkins MJ, Murray JD (1990) A mathematical model of self-organized pattern formation on the combs of honeybee colonies. J Theor Biol 147:553–571

    Article  Google Scholar 

  • Camazine S, Crailsheim K, Hrassnigg N, Robinson GE, Leonhard B, Kropiunigg H (1998) Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 29:113–126

    Article  CAS  Google Scholar 

  • Camazine S, Deneubourg JL, Franks N, Sneyd J, Theraulaz S, Bonabeau E (2001) Self-organized biological systems. Princeton University Press, Princeton, Oxford

    Google Scholar 

  • Chauvin R (1976) Sur des substances qui provoquent l’étirage de la cire. Apidologie 7:237–242

    Article  Google Scholar 

  • Chauvin R, Darchen R, Pain J (1961) Sur I’existence d’une hormone de construction chez les abeilles. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 253:1135–1136

    CAS  Google Scholar 

  • Cheshire FR (1888) Bees and beekeeping; scientific and practical, vol 1. L Upcott, London

    Google Scholar 

  • Crailsheim K (1990) The protein balance of the honeybee worker. Apidologie 21:417–429

    Article  CAS  Google Scholar 

  • Crailsheim K, Schneider LHW, Hrassnigg N, Bühlman G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera). J Insect Physiol 38:409–419

    Article  Google Scholar 

  • Crailsheim R, Crailsheim K, Hrassnigg N, Stabentheiner A (1996) Diurnal behavioural differences in forager and nurse honeybees (Apis mellifera carnica Pollm.). Apidologie 27:235–244

    Article  Google Scholar 

  • Darchen R (1956) La reine d’Apis mellifica et les constructions cirières. C R Hebd Seances Acad Sci Ser D Sci Nat Paris 243:439–441

    Google Scholar 

  • Darchen R (1957) La reine d’Apis mellifica, les ouvrières pondeuses et les constructions cirières. Insectes Soc 4:321–325

    Article  Google Scholar 

  • De Groot AP (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L). Physiol Comp Oecol 3:197–285

    Google Scholar 

  • Dreller C, Page RE, Fondrk MK (1999) Regulation of pollen foraging in honeybee colonies: effects of young brood, stored pollen, and empty space. Behav Ecol Sociobiol 45:227–233

    Article  Google Scholar 

  • Dreller C, Tarpy DR (2000) Perception of the pollen need by foragers in a honeybee colony. Anim Behav 59:91–96. doi: http://dx.doi.org/10.1006/anbe.199.1301

    Google Scholar 

  • Dumas JB, Edwards HM (1843) Note sur la production de la cire des abeilles. Ann Sci Nat Paris 20:l–8

    Google Scholar 

  • Dżierzon J (1861) Rationelle Bienenzucht oder Theorie und Praxis. Falch’sche Buchdrukererei, Brieg

    Google Scholar 

  • Eckert CD, Winston ML, Ydenberg RC (1994) The relationship between population size, amount of brood, and individual foraging behaviour in the honeybee, Apis mellifera L. Oecologia 97:248–255

    Article  Google Scholar 

  • Fehler M, Kleinhenz M, Klugl F, Puppe F, Tautz J (2007) Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica). Naturwissenschaften 94:675–680

    Article  CAS  PubMed  Google Scholar 

  • Fell RD, Morse RA (1984) Emergency queen cell production in the honeybee colony. Insectes Soc 31:221–237

    Article  Google Scholar 

  • Fergusson AW, Free JB (1981) Factors determining the release of Nasonov pheromones by honeybees at the hive entrance. Physiol Entomol 6:15–19

    Article  Google Scholar 

  • Fewell JH, Winston ML (1992) Colony state and regulation of pollen foraging in the honeybee, Apis mellifera L. Behav Ecol Sociobiol 30:387–393

    Article  Google Scholar 

  • Filmer RS (1932) Brood area and colony size as factors in activity of pollination units. J Econ Entomol 25:336–343

    Google Scholar 

  • Free JB (1967) Factors determining the collection of pollen by honeybee foragers. Anim Behav 15:134–144

    Article  CAS  PubMed  Google Scholar 

  • Free JB, Williams IH (1971) The effect of giving pollen and pollen supplement to honeybee colonies on the amount of pollen collected. J Apic Res 10:87–90

    Google Scholar 

  • Free JB, Wiliams IH (1974) Factors determining food storage and brood rearing in honeybee (Apis mellifera L.) comb. J Entomol Ser A49:47–63

    Google Scholar 

  • Free JB, Williams IH (1972) Hoarding by honeybees (Apis mellifera L). Anim Behav 203:321–334

    Google Scholar 

  • Freudenstein H (1960) Einfluss der Pollennahrung auf der Bauvermögen, die Wachsdrüsen und den Fettkörper der Honigbiene (Apis mellifera L). Zoo1 Jahrb Allg Zoo1 Physiol Tiere 69:95–124

    Google Scholar 

  • Goetze G, Bessling BK (1959) Die Wirkung verschiedener Fütterung der Honigbiene auf Wachserzeugung und Bautätigkeit. Z Bienenforsch 4:202–209

    CAS  Google Scholar 

  • Haydak MH (1970) Honey bee nutrition. Ann Rev Entomol 15:143–156

    Article  Google Scholar 

  • Hellmich RL, Kulincevic JM, Rothenbuhler WC (1985) Selection for high and low pollen-hoarding honeybees. J Hered 76:155–158

    Google Scholar 

  • Hepburn HR (1998) Reciprocal interactions between honeybees and combs in the integration of some colony functions in Apis mellifera. Apidologie 29:47–66

    Article  Google Scholar 

  • Herbert EW (1992) Honey bee nutrition. In: Graham JM (ed) The hive and the honey bee. Dadant & Sons, Hamilton, pp 197–233

    Google Scholar 

  • Hornborstel HC (orig Mellitophilus Theosebastus) (1744) Neue Entdeckung, wie dar Wachs won den Bienen Komt. Hamburg Vermis Bibliothek 2:45–62

    Google Scholar 

  • Huber F (1814) Nouvelles observations sur les abeilles. English trans: (1926). Dadant, Hamilton

    Google Scholar 

  • Humphrey JAC, Dykes ES (2008) Thermal energy conduction in a honeybee comb due to cell-heating bees. J Theor Biol 250:194–208

    Article  CAS  PubMed  Google Scholar 

  • Hunter J (1792) Observations on bees. Phil Trans R Soc 82:128–196

    Google Scholar 

  • Jay SC (1964) The cocoon of the honey bee, Apis mellifera L. Can Entomol 96:784–792

    Article  Google Scholar 

  • Jenkins MJ, Sneyd J, Camazine S, Murray JD (1992) On a simplified model for pattern formation in honey bee colonies. J Math Biol 30:281–306

    Article  Google Scholar 

  • Johnson BR (2009) Organizing model for task allocation via frequent task quitting and random walks in the honeybee. Am Nat 174:537–547

    Article  PubMed  Google Scholar 

  • Jones J, Myerscough M, Graham S, Oldroyd BP (2004) Honey bee nest theromregulation: diversity promotes stability. Science 305:402–404

    Article  CAS  PubMed  Google Scholar 

  • Kaneda T (1967) Biosynthesis of long-chain hydrocarbons. 1. Incorporation of L-valine, L-threonine. L-isoleucine and L-leucine into specific branched chain hydrocarbons in tobacco. Biochem 6:2023–2032

    Article  CAS  Google Scholar 

  • Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231

    Article  PubMed  Google Scholar 

  • Kolattukudy PE (1968) Biosynthesis of surface lipids. Science 159:498–535

    Article  CAS  PubMed  Google Scholar 

  • Kurstjens SP, Hepburn HR, Schoening FRL, Davidson BC (1985) The conversion of wax scales into comb wax by African honeybees. J Comp Physiol B156:95–102

    Article  Google Scholar 

  • Lindauer M (1952) Ein Beitrag zur Fräge der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345

    Article  Google Scholar 

  • Lipiński Z (2006) The emotional nature of the worker honeybee (Apis mellifera L.). J Apic Sci 50:49–62

    Google Scholar 

  • Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee Wld 82:60–75

    Google Scholar 

  • Mattila HR, Otis GW (2006a) Influence of pollen diet in spring on development of honeybee (Hymenoptera: Apidae) colonies. J Econ Entomol 99:604–613

    Article  CAS  PubMed  Google Scholar 

  • Mattila HR, Otis GW (2006b) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honeybee workers. Apidologie 37:533–546

    Article  Google Scholar 

  • Maurizio A (1954) Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.). Landwirt Jahrb Schweiz 62:115–182

    Google Scholar 

  • Maurizio A (1959) Factors influencing the lifespan of bees. In: Wolstenholme GEW, O’Connor M (eds) Proceedings of the ciba foundation, symposium the lifespan of animals, Churchill, London, 231–243

    Google Scholar 

  • McDonald JL (1968) The behaviour of pollen foragers which lose their load. J Apic Res 7:45–46

    Google Scholar 

  • Montovan KJ, Karst N, Jones LE, Seeley TD (2013) Individual behavioral rules sustain the cell allocation pattern in the combs of honey bee colonies (Apis mellifera). J Theoret Biol 336:75–86. doi:10.1016/j.jtbi.2013.07.010, arXiv:1211.4298v2[q-bio.PE]

    Article  Google Scholar 

  • Moritz RFA, Southwick EE (1992) Bees as superorganisms-an evolutionary reality. Springer, Berlin

    Book  Google Scholar 

  • Moeller FE (1972) Honeybee collection of corn pollen reduced by feeding pollen in the hive. Am Bee J 112:210–212

    Google Scholar 

  • Naumanna K, Winstona ML, Slessor KN, Prestwich GD, Latlia B (1992) Aromatic honey bee queen mandibular gland pheromone components: movement as a unit. Canad Entomol 124:917–934

    Article  Google Scholar 

  • Nye WP, Mackensen O (1970) Selective breeding of honeybees for alfalfa pollen collection: with tests in high and low alfalfa pollen collection regions. J Apic Res 9:61–64

    Google Scholar 

  • Page RE, Robinson GE (1991) The genetics of division of labor in honeybee colonies. Adv Insect Physiol 23:117–169

    Article  Google Scholar 

  • Pankiw T, Page RE, Fondrk MK (1998) Brood pheromone stimulates pollen foraging in honeybees (Apis mellifera). Behav Ecol Sociobiol 44:193–198

    Article  Google Scholar 

  • Peterka V (1939) Sojamehl und die Fräge der Pollenersatzmittel. Schweiz Bienen-Ztg 62:143–153

    Google Scholar 

  • Phiancharoen M, Duangphakdee O, Hepburn HR (2011) Biology of nesting. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin, pp 109–132

    Chapter  Google Scholar 

  • Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honeybee colonies. Nature 333:356–358

    Article  Google Scholar 

  • Rösch GA (1930) Untersuchungen über die Arbeitsteilung im Bienenstaat. Die Tätigkeiten der Arbeistbienen unter experimentet veränderten Bedingungen. Z Vegel Physiol 12:1–71

    Google Scholar 

  • Röseler PF (1967) Lage und Funktionsleistung der Wachsdrüsen bei einigen Hummerlarten im Vergleich zu anderen Apiden. Zool Anz 94:73–783

    Google Scholar 

  • Schmickl T, Crailsheim K (2001) Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. J Comp Physiol A187:541–547

    Google Scholar 

  • Schmid A, Kleine G (1865) Leitfaden für den Unterricht in Theorie und Praxis einer rationellen Bienenzucht. Bech, Nordlingen

    Google Scholar 

  • Seeley TD (1985) Honeybee ecology. A study of adaptation in social life. Princeton University Press, Princeton

    Google Scholar 

  • Seeley TD (1989) The honey bee colony as a superorganism. Am Sci 77:546–553

    Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insectes Soc 23:495–512

    Article  Google Scholar 

  • Southwick EE (1991) The colony as a thermoregulating superorganism. In: Goodmann LJ, Fischer RC (eds) The behaviour and physiology of bees. CAB International, Wallingford, pp 28–47

    Google Scholar 

  • Southwick EE, Heldmaier G (1987) Temperature control in honeybee colonies. Bioscience 37:395–399

    Article  Google Scholar 

  • Taranov GF (1959) The production of wax in the honeybee colony. Bee Wld 40:113–121

    Google Scholar 

  • Tautz J, Maier S, Groh C, Rossler W, Brockman A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Nat Acad Sci 100:7343–7347

    Article  CAS  PubMed  Google Scholar 

  • Theraulaz G, Gautrais J, Camazine S, Deneubourg JL (2003) The formation of spatial patterns in social insects: from simple behaviours to complex structures. Phil Trans R Soc Lond 361:1263–1282

    Article  Google Scholar 

  • Todd FE, Reed CB (1970) Brood measurement as a valid index to the value of honeybees as pollinators. J Econ Entomol 63:148–149

    Google Scholar 

  • Tulloch AP (1973) Comparison of some commercial waxes by gas liquid chromatography. J Am Oil Chem Soc 50:269–272

    Article  CAS  Google Scholar 

  • van Laere O, Martens N (1971) Influence d’une diminution artificielle de la provision de proteines sur l’activité de collete de la colonie d’abeilles. Apidologie 2:197–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hepburn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hepburn, H.R., Pirk, C.W.W., Duangphakdee, O. (2014). The Role of Pollen in Honeybee Colonies. In: Honeybee Nests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54328-9_8

Download citation

Publish with us

Policies and ethics