Advertisement

Basics

  • Ingolf V. Hertel
  • Claus-Peter Schulz
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Section 1.1 gives a brief survey of the canonical subject areas in physics, of physics history and the quantum nature of atomic phenomena. An introduction to orders of magnitude of length, time and energy follows. Section 1.2 summarizes some essentials of special relativity. Section 1.3 introduces some elements of statistical mechanics and thermodynamics. The photon, key particle in this text book, enters the scene in Sect. 1.4. Section 1.5 makes a very short excursion into the nature of the “four fundamental interactions” and to the “standard model” of elementary particles. Section 1.6 deals with the mundane subject of how free, charged particles move under the influence of an external electromagnetic field. Particles and waves (Sect. 1.7) and the Bohr model of the H atom (Sect. 1.8) lead us to the foundations of modern physics. Section 1.9 introduces one of the key concepts of quantum mechanics: space quantization as discovered in the famous Stern-Gerlach experiment – which in turn led, more or less directly, to the discovery of the electron spin, treated in Sect. 1.10.

Keywords

Angular Momentum Nobel Prize Orbital Angular Momentum Black Body Radiation Photoelectric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acronyms and Terminology

AC:

‘Alternating current’, oscillating electric voltage and current.

AMO:

‘Atomic, molecular and optical’, physics.

a.u.:

‘atomic units’, see Sect.  2.6.2.

BEC:

Bose-Einstein condensation’.

BESSY:

‘Berlin Electron Strorage ring for Synchrotron Radiation’, Germany’s third generation synchrotron radiation source in Berlin-Adlerhof.

BZ:

Brillouin zone’, represents all wave vectors of radiation which can be Bragg-reflected by a crystal lattice. Important concept in solid state physics.

CCD:

‘Charge coupled device’, semiconductor device typically used for digital imaging (e.g. in electronic cameras).

chemical-potential:

‘In statistical thermodynamics defined as the amount of energy or work that is necessary to change the number of particles of a system (by 1) without disturbing the equilibrium of the system’, see μ in Sect. 1.3.4.

CIE:

‘Commission international de l’éclairage’, International Commission on Illumination, provides e.g. colorometric tables (http://files.cie.co.at/204.xls).

CMB(R):

‘Cosmic microwave background’, radiation at \(2.725\operatorname{K}\) from the origin of the universe.

DC:

‘Direct current’, unidirectional electric voltage and current.

ESS:

‘European Spallation Source’, large scale facility for generating neutrons for structural research, see http://europeanspallationsource.se/.

EUV:

‘Extreme ultraviolet’, part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(121\operatorname{nm}\) according to ISO 21348 (2007).

FIR:

‘Far infrared’, spectral range of electromagnetic radiation. Wavelengths between \(3\operatorname{\upmu m}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).

FT:

Fourier transform’, see Appendix I.

FWHM:

‘Full width at half maximum’.

HERA:

‘Hadron-Elektron-Ring-Anlage’, for collision experiments between electrons of 30 GeV and protons of 820 GeV – operated at DESY very sucessfully until 2007.

HF:

‘High frequency’, part of the RF spectrum. Wavelengths from \(10\operatorname{m}\) to \(100\operatorname{m}\) or frequencies from \(3\operatorname{MHz}\) to \(30\operatorname{MHz}\) according to ISO 21348 (2007).

ICR:

‘Ion cyclotron resonance’, spectroscopy (specifically mass spectroscopy) based on irradiation with a radio frequency in resonance with the cyclotron frequency of an ion in magnetic field (see Sect. 1.6.3).

IR:

‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1\operatorname{mm}\) according to ISO 21348 (2007).

LED:

‘Light emitting diode’.

LEED:

‘Low energy electron diffraction’, see Sect. 1.7.2.

LF:

‘Low frequency’, part of the RF spectrum from \(30\operatorname{kHz}\) up to \(300\operatorname{kHz}\).

LHC:

‘Large hadron collider (not to be confused with left hand circularly polarized light)’, high energy physics facility at CERN (Geneva) providing particles with collision energies up to 14 TeV for protons and up to 1 PeV for heavy ions.

MF:

‘Medium frequency’, part of the RF spectrum from \(300\operatorname{kHz}\) up to \(3\operatorname{MHz}\).

MIR:

‘Middle infrared’, spectral range of electromagnetic radiation. Wavelengths between \(1.4\operatorname{\upmu m}\) and \(3\operatorname{\upmu m}\) according to ISO 21348 (2007).

MW:

‘Microwave’, range of the electromagnetic spectrum. In spectroscopy MW usually refers to wavelengths from \(1\operatorname{mm}\) to \(1\operatorname{m}\) corresponding to frequencies between \(0.3\operatorname{GHz}\) and \(300\operatorname{GHz}\); ISO 21348 (2007) defines it as the wavelength range between \(1\operatorname{mm}\) and \(15\operatorname{mm}\).

NIR:

‘Near infrared’, spectral range of electromagnetic radiation. Wavelengths between \(760\operatorname{nm}\) and \(1.4\operatorname{\upmu m}\) according to ISO 21348 (2007).

NIST:

‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA. http://www.nist.gov/index.html.

PES:

‘Photoelectron spectroscopy’, see Sect.  5.8, Vol. 2.

PET:

‘Positron emission tomography’, medical exploitation of positron-electron annihilation (see Sect. 1.4.3).

QCD:

‘Quantum chromodynamics’, the theory of strong interaction (color force). A fundamental force describing the interactions of quarks and gluons, the constituents of all hadrons.

QED:

‘Quantum electrodynamics’, combines quantum theory with classical electrodynamics and special relativity. It gives a complete description of light-matter interaction.

QMS:

‘Quadrupole mass spectrometer’, a brief explanation is found in Sect. 1.6.4.

RF:

‘Radio frequency’, range of the electromagnetic spectrum. Technically, one includes frequencies from \(3\operatorname{kHz}\) up to \(300\operatorname{GHz}\) or wavelengths from \(100\operatorname{km}\) to \(1\operatorname{mm}\); ISO 21348 (2007) defines the RF wavelengths from \(100\operatorname{m}\) to \(0.1\operatorname{mm}\); in spectroscopy RF usually refers to \(100\operatorname{kHz}\) up to some \(\operatorname{GHz}\).

SI:

‘Système international d’unités’, international system of units (m, kg, s, A, K, mol, cd), for details see the website of the Bureau International des Poids et Mésure http://www.bipm.org/en/si/ or NIST http://physics.nist.gov/cuu/Units/index.html.

SM:

‘Standard model’, of elementary particle physics. The basis of today’s understanding of matter.

SR:

‘Synchrotron radiation’, electronmagnetic radiation in a broad range of wavelengths, generated by relativistic electrons on circular orbits.

THz:

‘Tera-Hertz’, spectral region of electromagnetic radiation. Wavelengths range covering parts of MW and IR.

UHF:

‘Ultra high frequency’, part of the RF spectrum. Wavelengths from \(10\operatorname{cm}\) to \(1\operatorname{m}\) or frequencies from \(3\operatorname{GHz}\) to \(300\operatorname{MHz}\) according to ISO 21348 (2007).

UV:

‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths between \(100\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).

UVA:

‘Ultraviolet a’, part of the UV spectral range. Wavelengths between \(315\operatorname{nm}\) and \(400\operatorname{nm}\) according to ISO 21348 (2007).

UVB:

‘Ultraviolet b’, part of the UV spectral range. Wavelengths between \(280 \operatorname{nm}\) and \(315\operatorname{nm}\) according to ISO 21348 (2007).

UVC:

‘Ultraviolet c’, part of the UV spectral range. Wavelengths between \(100\operatorname{nm}\) and \(280\operatorname{nm}\) according to ISO 21348 (2007).

VHF:

‘Very high frequency’, part of the RF spectrum. Wavelengths from \(1\operatorname{m}\) to \(10\operatorname{m}\) or frequencies from \(300\operatorname{MHz}\) to \(30\operatorname{MHz}\) according to ISO 21348 (2007).

VIS:

‘Visible’, spectral range of electromagnetic radiation. Wavelengths between \(380\operatorname{nm}\) and \(760\operatorname{nm}\) according to ISO 21348 (2007).

VUV:

‘Vacuum ultraviolet’, spectral range of electromagentic radiation. part of the UV spectral range. Wavelengths between \(10\operatorname{nm}\) and \(200\operatorname{nm}\) according to ISO 21348 (2007).

XUV:

‘Soft X-ray (sometimes also extreme UV)’, spectral wavelength range between \(0.1\operatorname{nm}\) and \(10\operatorname{nm}\) according to ISO 21348 (2007), sometimes up to \(40\operatorname{nm}\).

References

  1. Arndt, M., O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw and A. Zeilinger: 1999. ‘Wave-particle duality of C60 molecules’. Nature, 401, 680–682. CrossRefADSGoogle Scholar
  2. ASTM: 2008. ‘G173-03 Reference Spectra Derived from SMARTS v. 2.9.2’, American Society for Testing and Materials (ASTM). http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html, accessed: 7 Jan 2014.
  3. Bohr, N.: 1913. ‘On the constitution of atoms and molecules’. Philos. Mag., 6, 26, 1–25. CrossRefGoogle Scholar
  4. Bohr, N. H. D.: 1922. ‘The Nobel prize in physics: for his services in the investigation of the structure of atoms and of the radiation emanating from them’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1922/.
  5. Bretschneider, E.: 2007. ‘Efficacy limits for solid-state white light sources’, Laurin Publishing Co., Inc., Pittsfield MA, USA. http://www.photonics.com/Article.aspx?AID=28677, accessed: 7 Jan 2014. Google Scholar
  6. de Broglie, L.: 1929. ‘The Nobel prize in physics: for his discovery of the wave nature of electrons’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1929/.
  7. CERN: 2013. ‘The search for the Higgs boson’, Geneva. http://home.web.cern.ch/about/physics/search-higgs-boson, accessed: 8 Jan 2013.
  8. Chantler, C. T., K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova and D. S. Zucker: 2005. ‘X-ray form factor, attenuation, and scattering tables (version 2.1)’, NIST. http://physics.nist.gov/ffast, accessed: 7 Jan 2014.
  9. Compton, A. H.: 1927. ‘The Nobel prize in physics: for his discovery of the effect named after him’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1927/.
  10. Cornell, E. A., W. Ketterle and C. E. Wieman: 2001. ‘The Nobel prize in physics: for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/2001/.
  11. Dehmelt, H. G. and W. Paul: 1989. ‘The Nobel prize in physics: for the development of the ion trap technique’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1989/.
  12. DickLyon: 2008. ‘Luminosity function’, Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Luminosity.png, accessed: 7 Jan 2014.
  13. Einstein, A.: 1905. ‘Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt’. Ann. Phys., 17, 132. CrossRefzbMATHGoogle Scholar
  14. Einstein, A.: 1921. ‘The Nobel prize in physics: for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1921/.
  15. Englert, F. and P. W. Higgs: 2013. ‘The Nobel prize in physics: for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s large hadron collider’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/2013/.
  16. Herzog, R.: 1935. ‘Berechnung des Streufeldes eines Kondensators, dessen Feld durch eine Blende begrenzt ist’. Arch. Elektrotech., 29, 790–802. CrossRefzbMATHGoogle Scholar
  17. Honsberg, C. and S. Bowden: 2012. ‘PVCDROM – Air Mass’, UNSW and Solar Power Labs at ASU, Australia. http://www.pveducation.org/pvcdrom/properties-of-sunlight/air-mass, accessed: 7 Jan 2014.
  18. ISO 21348: 2007. ‘Space environment (natural and artificial) – process for determining solar irradiances’. International Organization for Standardization, Geneva, Switzerland. Google Scholar
  19. Kopp, G. and J. L. Lean: 2011. ‘A new, lower value of total solar irradiance: evidence and climate significance’. Geophys. Res. Lett., 38, L01706. CrossRefADSGoogle Scholar
  20. Mamyrin, B. A.: 1994. ‘Laser-assisted reflectron time-of-flight mass-spectrometry’. Int. J. Mass Spectrom. Ion Process., 131, 1–19. CrossRefADSGoogle Scholar
  21. Mather, J. C. and G. F. Smoot: 2006. ‘The Nobel prize in physics: for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/2006/.
  22. Millikan, R. A.: 1923. ‘The Nobel prize in physics: for his work on the elementary charge of electricity and on the photoelectric effect’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1923/.
  23. Mueller, U., F. H. Niesen, Y. Roske, F. Goetz, J. Behlke, K. Buessow and U. Heinemann: 2007. ‘Crystal structure of human prolidase: the molecular basis of PD disease’, Hinxton, UK: PDB entry 2okn. The European Molecular Biology Laboratory (EMBL-EBI). http://www.ebi.ac.uk/pdbe-srv/view/entry/2okn/summary.html, accessed: 7 Jan 2014.
  24. NIST: 2010. ‘Reference on constants, units, and uncertainties’, NIST. http://physics.nist.gov/cuu/Constants/, accessed: 7 Jan 2014.
  25. NIST: 2011. ‘Conversion factors for energy equivalents’, NIST. http://physics.nist.gov/cuu/Constants/energy.html, accessed: 7 Jan 2014.
  26. Ohno, Y.: 2010. ‘Radiometry and photometry for vision optics’. In: M. Bass, ed., ’Handbook of Optics’, vol. II, 37.1. New York: McGraw-Hill. Google Scholar
  27. Pauli, W.: 1945. ‘The Nobel prize in physics: for the discovery of the exclusion principle, also called the Pauli principle’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1945/.
  28. Planck, M.: 1900. ‘Zur Theorie des Gesetzes der Energieverteilung im Normalenspektrum’. Verh. Dtsch. Phys. Ges., 2, 235–245. Google Scholar
  29. Planck, M. K. E. L.: 1918. ‘The Nobel prize in physics: in recognition of the services he rendered to the advancement of physics by his discovery of energy quanta’, Stockholm. http://www.nobelprize.org/nobel_prizes/physics/laureates/1918/.
  30. Schöllkopf, W. and J. P. Toennies: 1996. ‘The nondestructive detection of the helium dimer and trimer’. J. Chem. Phys., 104, 1155–1158. CrossRefADSGoogle Scholar
  31. SORCE: 2012. ‘SORCE Solar Spectral Irradiance’, Boulder, Co.: Laboratory for Atmospheric and Space Physics, University of Colorado and NASA. http://lasp.colorado.edu/lisird/sorce/sorce_ssi/, accessed: 7 Jan 2014.
  32. SSE: 2012. ‘Solar System Exploration – Our Solar System’, NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Display=Facts&Object=Sun, accessed: 7 Jan 2014.
  33. Stern, O.: 1921. ‘Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld’. Z. Phys., VII, 249–253. Nachdruck: Z. Phys. D, Atoms, Molecules and Clusters 10, 111–116 (1988). CrossRefADSGoogle Scholar
  34. Stern, O.: 1943. ‘The Nobel prize in physics: for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1943/.
  35. Thomson, J. J.: 1906. ‘The Nobel prize in physics: in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases’, Stockholm. http://www.nobelprize.org/nobel_prizes/physics/laureates/1906/.
  36. Tomonaga, S.-I., J. Schwinger and R. P. Feynman: 1965. ‘The Nobel prize in physics: for fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles’, Stockholm. http://nobelprize.org/nobel_prizes/physics/laureates/1965/.
  37. Wikipedia contributors: 2013. ‘Mathieu function’, Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Mathieu_function, accessed: 7 Jan 2014.
  38. Wiley, W. C. and I. H. McLaren: 1955. ‘Time-of-flight mass spectrometer with improved resolution’. Rev. Sci. Instrum., 26, 1150–1157. CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ingolf V. Hertel
    • 1
  • Claus-Peter Schulz
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations